

Dissertation Defense

Geometric Deep Learning & Generative Modeling of 3D Biomolecules

Alex Morehead, PhD Candidate University of Missouri, April 28th, 2025

Presentation Overview

Geometric Deep Learning (e.g., AlphaFold 2, *Geometric Transformer*, *GCPNet*) Generative Models (e.g., AlphaFold 3, *GCDM*, *FlowDock*) Biomolecule Design (e.g., RFdiffusionAA, *GCDM-SBDD*, *PoseBench*)

In this defense, we discuss three synergistic research areas that have recently experienced *huge* growth

What is Geometric Deep Learning?

Key Ideas

- 1. Symmetries in nature can be modeling precisely using bespoke neural networks
- 2. Many of the most common types of AI algorithms (e.g., Transformers) are symmetric
- 3. Modeling real-world data with geometric deep learning has yielded compelling results

Geometric Deep Learning Case Study (AlphaFold 2)

A prime example of Al4Science!

Reference: Jumper et al. 2021, Nature

Geometric Deep Learning Case Study (Geometric Transformer)

Geometric Transformer

Geometric Deep Learning Case Study (Geometric Transformer - Conformation Module)

Geometric Transformer Conformation Module

 The model uniquely learns representations of geometric line graphs for downstream predictions!

Geometric Deep Learning Case Study (Geometric Transformer)

			19 (Both Types)			
Method	P@10	P@L/10	P@L/5	R@L	R@L/2	R@L/5
BI	0.01	0	0.01	0.02	0.01	0.001
DI (GCN)	0.12(0.04)	0.10(0.05)	0.09(0.04)	0.11(0.001)	0.06(0.01)	0.02(0.01)
DI (GT)	0.10(0.03)	0.09(0.03)	0.08(0.02)	0.11(0.02)	0.06(0.01)	0.02(0.01)
DI (GeoT w/o EPE)	0.13(0.02)	0.14(0.03)	0.13(0.02)	0.12(0.01)	0.07(0.01)	0.03(0.01)
DI (GeoT w/o GFG)	0.11(0.01)	0.12(0.02)	0.10(0.02)	0.11(0.01)	0.06(0.01)	0.03(0.01)
DI (GeoT)	0.21 (0.01)	0.19 (0.01)	0.14(0.01)	0.13(0.02)	0.08 (0.01)	0.04(0.003)

Geometric priors consistently improve
 predictions of atomic protein-protein interactions!

Geometric Deep Learning Case Study (Gated Graph Transformer)

• Learnable gating also played an important role in follow-up work on (multi-chain) protein representation learning

Reference: Chen*, **Morehead***, et al. 2023, ISMB *equal contribution

ii. Geometry-Complete Graph Convolution with GCPNet

Reference: Morehead et al. 2024, Bioinformatics

A broadly applicable

geometric graph neural network

Geometric Deep Learning Case Study (GCPNet - GCP Module)

Reference: Morehead et al. 2024, Bioinformatics

Geometric Deep Learning Case Study (GCPNet - Forward Pass)

```
Algorithm 1. GCPNET
  Require: (h_i \in \mathbf{H}, \chi_i \in \mathbf{\chi}), (e_{ij} \in \mathbf{E}, \xi_{ij} \in \mathbf{\xi}), x_i \in \mathbf{X}, \text{ graph } \mathcal{G}
   1: Initialize \mathbf{X}^0 = \mathbf{X}^C \leftarrow \text{Centralize}(\mathbf{X})
  2: \mathcal{F}_{ii} = Localize(x_i \in \mathbf{X}^0, x_i \in \mathbf{X}^0)
  3: Project (h_i^0, \chi_i^0), (e_{ij}^0, \xi_{ij}^0) \leftarrow \mathbf{GCP}_e((h_i, \chi_i), (e_{ij}, \xi_{ij}), \mathcal{F}_{ij})
  4: for l = 1 to l do
             (h_i^l, \chi_i^l), x_i^l = \text{GCPConv}^l((h_i^{l-1}, \chi_i^{l-1}), (e_{ii}^0, \xi_{ii}^0), x_i^{l-1}, \mathcal{F}_{ii})
  6: end for
  7: if Updating Node Positions then
               \mathcal{F}_{ii}^{L} = \text{Localize}(x_i \in \mathbf{X}^l, x_i \in \mathbf{X}^l)
  8:
               Finalize (\mathbf{X}^{L}) \leftarrow \text{Decentralize}(\mathbf{X}^{l})
  9.
10: else
11: x_i^L = x_i^0
12: end if
13: Project (h_i^L, \chi_i^L), (e_{ij}^L, \xi_{ij}^L) \leftarrow \mathbf{GCP}_{\rho}((h_i^I, \chi_i^I), (e_{ij}^0, \xi_{ij}^0), \mathcal{F}_{ij}^L)
 Ensure: (h_i^L, \chi_i^L), (e_{ii}^L, \xi_{ii}^L), x_i^L
```

So how does this model work?

Туре	Method	Symmetries	R/S Accuracy (%) ↑
INN	ChIRo (Schneuing et al. 2022)	SE(3)	98.5
	SchNet (Schneuing et al. 2022)	E(3)	54.4
	DimeNet++ (Schneuing et al. 2022)	E(3)	65.7
	SphereNet (Schneuing et al. 2022)	SE(3)	98.2
ENN	EGNN (Schneuing et al. 2022)	E(3)	50.4
	SEGNN (Schneuing et al. 2022)	SE(3)	83.4
Ours	GCPNET w/o Frames	E(3)	50.2 ± 0.6
	GCPNet	SE(3)	98.7 ± 0.1

• Physical priors are necessary for geometric neural networks to understand molecular chirality!

Method	ES(5)	ES(20)	G+ES(20)	L+ES(20)	Average
GNN (Du et al. 2022)	0.0131	0.0720	0.0721	0.0908	0.0620
TFN (Du et al. 2022)	0.0236	0.0794	0.0845	0.1243	0.0780
SE(3)-Transformer (Du <i>et al.</i> 2022)	0.0329	0.1349	0.1000	0.1438	0.1029
Radial Field (Du et al. 2022)	0.0207	0.0377	0.0399	0.0779	0.0441
PaiNN	0.0158	N/A	N/A	N/A	N/A
ET	0.1653	0.1788	0.2122	0.2989	0.2138
EGNN <u>(Du</u> et al. 2022)	0.0079	0.0128	0.0118	0.0368	0.0173
ClofNet (Du et al. 2022)	0.0065	0.0073	0.0072	0.0251	0.0115
GCPNET w/o Frames	0.0067	0.0074	0.0074	0.0200	0.0103
GCPNET w/o RESGCP	0.0090	0.0135	0.0099	0.0278	0.0150
GCPNET w/o Scalars	0.0119	0.0173	0.0170	0.0437	0.0225
GCPNET	0.0070	0.0071	0.0073	0.0173	0.0097

• For complex physical (many-body) systems, learnable geometric frames enable more precise point predictions

Туре	Method	RMSE ↓	p 1	<i>Sp</i> ↑
CNN	3DCNN (Wang et al. 2023b)	1.416 ± 0.021	0.550	0.553
	DeepDTA (Wang et al. 2023b)	1.866 ± 0.080	0.472	0.471
	DeepAffinity (Aykent and Xia 2022)	1.893 ± 0.650	0.415	0.426
RNN	Bepler and Berger (Wang et al. 2023b)	1.985 ± 0.006	0.165	0.152
	TAPE (Wang et al. 2023b)	1.890 ± 0.035	0.338	0.286
	ProtTrans (Wang et al. 2023b)	1.544 ± 0.015	0.438	0.434
GNN	GCN (Wang et al. 2023b)	1.601 ± 0.048	0.545	0.533
	DGAT (Aykent and Xia 2022)	1.719 ± 0.047	0.464	0.472
	DGIN (Aykent and Xia 2022)	1.765 ± 0.076	0.426	0.432
	DGAT-GCN (Aykent and Xia 2022)	1.550 ± 0.017	0.498	0.496
	MaSIF (Wang et al. 2023b)	1.484 ± 0.018	0.467	0.455
	IEConv (Wang et al. 2023b)	1.554 ± 0.016	0.414	0.428
	Holoprot-Full Surface (Wang et al. 2023b)	1.464 ± 0.006	0.509	0.500
	Holoprot-Superpixel (Wang et al. 2023b)	1.491 ± 0.004	0.491	0.482
	ProNet-Amino-Acid (Wang et al. 2023b)	1.455 ± 0.009	0.536	0.526
	ProNet-Backbone (Wang et al. 2023b)	1.458 ± 0.003	0.546	0.550
	ProNet-All-Atom (Wang et al. 2023b)	1.463 ± 0.001	0.551	0.551
	GeoSSL-DDM (Liu et al. 2023)	1.451 ± 0.030	0.577	0.572
ENN	Cormorant (Aykent and Xia 2022)	1.568 ± 0.012	0.389	0.408
	PaiNN	1.698 ± 0.050	0.366	0.358
	ET	1.490 ± 0.019	0.564	0.532
	GVP (Aykent and Xia 2022)	1.594 ± 0.073	0.434	0.432
	GBP (Aykent and Xia 2022)	1.405 ± 0.009	0.561	0.557
Ours	GCPNET w/o Frames	1.485 ± 0.015	0.521	0.504
	GCPNET w/o RESGCP	1.514 ± 0.008	0.471	0.468
	GCPNET w/o Scalars	1.685 ± 0.000	0.050	0.000
	GCPNET w/o Vectors	1.727 ± 0.005	0.270	0.304
	GCPNet	1.352 ± 0.003	0.608	0.607

Each model component is

important for accurately predicting protein-ligand binding affinities

Reference: Morehead et al. 2024, Bioinformatics

Geometric Deep Learning Case Study (ProteinWorkshop)

• GCPNet yielded excellent performance for inverse folding and protein-protein interaction prediction in a new standardized deep learning benchmark for protein representation learning

Fast Protein Structure EMA with GCPNet

• GCPNet has since also been adapted as a state-of-the-art estimator of the model accuracy (EMA) of predicted protein structures

What about Generative Modeling?

Key Ideas

- 1. Most datasets can become the basis of a powerful generative model of that domain
- 2. Once trained, such a generative model can generate new (similar yet distinct) examples
- 3. Importantly, these algorithms can enable ^{de} complex data analysis within scientific pipelines

Generative Modeling Case Study (AlphaFold 3)

Representing all of life's molecules with **denoising diffusion**

Reference: Abramson et al. 2024, Nature

Learning geometric (vector) features for diffusion generation

Reference: Morehead et al. 2024, Nature CommsChem

Task		a↓	Δε↓	€HOMO↓	€ _{LUMO} ↓	µ ↓	C _ν ↓
Units		Bohr ³	meV	meV	meV	D	cal M
Naive (Upper-bound	(k	9.01	1470	645	1457	1.616	6.857
# Atoms		3.86	866	426	813	1.053	1.971
EDM	3	2.76	655	356	584	1.111	1.101
GeoLDM		2.37	587	340	522	<u>1.108</u>	1.025
GCDM		1.97	602	344	479	0.844	0.689
QM9 (Lower-bound)	0.10	64	39	36	0.043	0.040
Task	a↓		Δε↓	€ _{HOMO} ↓	€LUMO↓	µ ↓	C _v ↓
Units	Bohr ³		meV	meV	meV	D	cal mol K
GeoLDM	2.77 ± 0.12		655 ± 20.57	357 ± 5.68	<u>565</u> ± 10.62	1.089 ± 0.02	1.070 ± 0.04
GCDM	1.99 ± 0.01		595 ± 14.34	346 ± 1.23	480 ± 6.58	$\textbf{0.855} \pm 0.00$	0.698 ± 0.01

• Neural network expressiveness

enables more precise 3D molecule generation for property conditioning

Туре		Method		NLL ↓	AS (%) ↑	MS	; (%) ↑
NF		E-NF		-	75.0	0.0	
DDPM		GDM		-14.2	75.0	0.0	
		GDM-aug		-58.3	77.7	0.0	
		EDM		-137.1	81.3	0.0	a la companya da companya d
		Bridge		_	81.0 ± 0.7	0.0	3)
		Bridge + Force		-	82.4 ± 0.8	0.0	
LDM		GraphLDM		-	76.2	0.0	
		GraphLDM-aug		-	79.6	0.0	2
		GeoLDM			84.4	0.0	8
GC-DDPM-OL	irs	GCDM w/o Frames		769.7	88.0 ± 0.3	3.4	±0.3
		GCDM w/o SMA		3505.5	43.9 ± 3.6	0.1	±0.0
		GCDM		-234.3	89.0 ± 0.8	5.2	±1.1
Data					86.5	2.8	
Method	NLL ↓	AS (%) ↑	MS (%) ↑	Val (%) ↑	Val and Uniq (%) ↑	Novel (%) ↑	PB-Valid (%) ↑
GeoLDM	-	84.4 ± 0.1	0.6 ± 0.1	99.5 ± 0.1	99.4 ± 0.1	-	38.3 ± 0.5
GCDM	- 215.1 ± 3.8	88.1 ± 0.1	4.3 ± 0.4	95.5 ± 0.1	95.5 ± 0.1	95.5±0.1	77.0 ± 0.1

• Neural network expressiveness for the first enables diffusion models to generate a sizeable fraction of valid large 3D molecules!

 Neural network expressiveness also yields consistent improvements in 3D molecule optimization of molecular properties

Reference: Morehead et al. 2024, Nature CommsChem

Generative Models Capture Molecular Details

DiffDock-L (Corso et al. 2024)

In the past two years, deep generative models have demonstrated the ability to produce **realistic** protein-binding conformations of ligand molecules

References: Corso et al. 2024, ICLR; Qiao et al. 2024, NMI

Do Generative Models Learn Meaningful Features?

NeuralPLexer (Qiao et al. 2024)

Key Insight: Generative structure prediction models, when pre-trained on large datasets of biomolecules, learn meaningful features that are **readily** adapted for binding affinity estimation

But What about Docking State Transitions? \rightarrow Flow Matching in 3D

References: Chen et al. 2024, ICLR; Jing et al. 2024, ICML

Another Angle on Flow Matching

Gaussian flow matching \rightarrow a kingdom of potatoes?

References: Fjelde et al. 2024, Blog Post; Esser et al. 2024, ICML

Generative Modeling Case Study (FlowDock)

The first available deep learning (blind) docking method based on **conditional flow matching**

Reference: Morehead et al. 2025, ISMB

Generative Modeling Case Study (FlowDock - PoseBusters)

• FlowDock debuts as a lightweight and accurate generative model of biomolecular structures

Generative Modeling Case Study (FlowDock - DockGen)

 FlowDock matches or exceeds the generalization capabilities of previous state-of-the-art methods

Accurate Sampling Trajectories

Generated Structure of PDBBind 6I67 (Predicted Affinity: 6.05)

Crystal Structure of PDBBind 6l67 (True Affinity 6.70)

Flow matching enables flexible docking via deep learning

Reference: Morehead et al. 2025, ISMB

Generative Modeling Case Study (FlowDock - PDBBind)

Method	Pearson (\uparrow)	Spearman (\uparrow)	RMSE (\downarrow)	MAE (\downarrow)			
GIGN	0.286	0.318	1.736	1.330			
TransformerCPI	0.470	0.480	1.643	1.317			
MONN	0.545	0.535	1.371	1.103			
TankBind	0.597	0.610	1.436	1.119			
DynamicBind (One-Shot)	0.665	0.634	1.301	1.060			
FLOWDOCK-HP	0.577 ± 0.001	0.560 ± 0.001	1.516 ± 0.001	1.196 ± 0.002			
FLOWDOCK-AFT	0.663 ± 0.003	0.624 ± 0.003	1.392 ± 0.005	1.113 ± 0.003			
FlowDock	$\boldsymbol{0.705 \pm 0.001}$	$\boldsymbol{0.674 \pm 0.002}$	1.363 ± 0.003	1.067 ± 0.003			
Method Runtime (s) CPU Memory Usage (GB) GPU Memory Usage (GB)							

Method	Runtime (s)	CPU Memory Usage (GB)	GPU Memory Usage (GB)
P2Rank-Vina	1,283.70	9.62	0.00
DiffDock-L	88.33	8.99	70.42
DynamicBind	146.99	5.26	18.91
RoseTTAFold-All-Atom	3,443.63	55.75	72.79
AF3	3,049.41	-	-
AF3-Single-Seq	58.72	-	-
Chai-1-Single-Seq	114.86	58.49	56.21
NeuralPLexer	29.10	11.19	31.00
FlowDock	39.34	11.98	25.61

• This (fast) model can accurately predict both biomolecular structures and binding affinities!

Generative Modeling Case Study (FlowDock - CASP16)

How does this impact Biomolecule Design?

Key Ideas

- 1. As geometric and generative models become more powerful, the number of promising biomolecule design use cases grows
- 2. Nonetheless, data quality (1) and quantity (2) can be rate limiters of successful design efforts
- 3. Pre-training on large (related) datasets can be a useful way to initialize a generative design model

Biomolecule Design Case Study (RoseTTAFoldAA & RFdiffusionAA)

Biomolecule Design Case Study (RoseTTAFoldAA & RFdiffusionAA)

Experimentally characterizing proteins designed for specific small molecules

with similar liq

550 600

600

Reference: Krishna et al. 2024, Science

550 600 650 700

Biomolecule Design Case Study (GCDM-SBDD)

• Finding: Molecule generation models can readily be repurposed as structure-based drug designers

Biomolecule Design Case Study (GCDM-SBDD)

 Note: Most structure-based drug design methods based on generative modeling are primarily challenged with pocket design specificity

Reference: Morehead et al. 2024, Nature CommsChem

Biomolecule Design Case Study (PoseBench)

 Intuition: An algorithm must be an accurate structure predictor before design is tractable

Biomolecule Design Case Study (PoseBench - PoseBusters Benchmark)

 Benchmarking results: AlphaFold 3 is currently the best structure predictor around, but not by a lot (and only with high-quality multiple sequence alignment inputs)

Biomolecule Design Case Study (PoseBench - CASP16 Benchmark)

 Benchmarking results: In diverse (multi-molecule) use cases, AlphaFold 3 shines, yet it is still challenged to faithfully model crystalized protein-ligand interactions

Biomolecule Design Case Study (PoseBench - DockGen-E Benchmark)

 Benchmarking results: Even for datasets overlapping with AlphaFold 3's training data, uncommon prediction targets highlight the model's room for improvement

Biomolecule Design Case Study (PoseBench - Failure Modes Analysis)

 Analysis: Most of the time when AlphaFold 3 makes an inaccurate prediction, the prediction target is evolutionarily distinct from what the model has seen

Biomolecule Design Case Study (PoseBench - Common Failure Modes)

(a) Biosynthetics (RFAA) (b) Immune Proteins (AF3) (c) Novel Proteins (AF3)

 Analysis: Even the best structure prediction methods such as AlphaFold 3 have trouble predicting several important classes of proteins

• Finding: An unsupervised best-of-N deep learning ensemble performs remarkably well compared to specialist (singular) prediction algorithms

Algorithm 1 MULTICOM_ligand for protein-ligand structure and affinity prediction

Notation: (X: intermediate protein or protein-ligand structure; \hat{X} : final protein-ligand structure; \hat{B} : binding affinity,

Ĉ: confidence score)

1: Input: Protein sequence and ligand SMILES string (S, M)

2: Predict $X^{init} \leftarrow \mathsf{ESMFold}(S)$

- 3: Sample $X^{dd} \leftarrow \text{DiffDock-L}(S, M, X^{init})$
- 4: Sample $X^{db} \leftarrow$ DynamicBind (S, M, X^{init})
- 5: Sample $X^{np} \leftarrow \text{NeuralPLexer}(S, M, X^{init})$
- 6: Predict $X^{rfaa} \leftarrow \text{RoseTTAFold-All-Atom}(S, M)$
- 7: Rank $X^{con} \leftarrow \text{StructureConsensus}(X^{dd,db,np,rfaa})$
- 8: Bust $X^{bust} \leftarrow PoseBustersFilters(X^{con})$
- 9: if Is Multi-Ligand then
- 10: Clash Bust $X^{bust} \leftarrow ClashFilters(X^{bust})$

11: end if

12: Finalize $\hat{X}, \hat{C}, \hat{B} \leftarrow \text{FlowDockAssess}(S, M, X^{bust})$

13: Output: Sampled top-5 heavy-atom structures \hat{X} with confidence scores \hat{C} and binding affinities \hat{B}

• Overview: How does this ensemble work?

• Evaluation: How well does this ensemble do in a (CASP16) blind assessment?

Capabilities: How well can this method predict binding affinities?

• Analysis: How do this method's (best and worst) predictions look?

Interdisciplinary Challenges

- Developing proper benchmarks and evaluation metrics for deep learning-based structure prediction and design methods requires dual computing and life science expertise
- 2. Evaluating the performance of structure-based drug design methods is **bottlenecked** by the rate of wet lab experiments a group can complete
- 3. Whether, and the extent to which, deep learning methods for biochemical data can generalize to novel types of biomolecules are open questions for the field

Future Directions

- 1. **Exploring** the design space of biomolecular diffusion models could be a powerful new means of drug discovery
- 2. Neural network expressiveness could be more strongly characterized and linked to the (in)capabilities of today's bio-generative models
- 3. Generative modeling is primed for innovation from the perspective of biophysical priors and conditional flow matching

Dissertation Outcomes (1)

- This PhD dissertation has yielded 8 first-author publications (with 3 additional papers either currently in review or released as a preprint) and has contributed to 20+ peer-reviewed works overall (including one NIH grant proposal)
- These first-author (+co-first-author) publications include 2 (+2) works presented at top CS conferences (according to CSRankings) including the International Conference on Learning Representations (ICLR) and Intelligent Systems for Molecular Biology (ISMB) and 2 works published in Nature Portfolio journals

Dissertation Outcomes (2)

- To date, this dissertation's associated papers have garnered 450+ citations and inspired multiple follow-up works in machine learning (GearNet - ICLR 2023 2023) and generative modeling (RNA-FrameFlow - ICML 2024 SPIGM)
- Further, this dissertation has been awarded the Berkeley Lab's 2025 Admiral Grace Hopper Postdoctoral Fellowship in Computing Sciences

References (1)

- Gao, Mu, et al. "High-performance deep learning toolbox for genome-scale prediction of protein structure and function." 2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC). IEEE, 2021.
- 2. **Morehead**, Alex, Chen Chen, and Jianlin Cheng. "Geometric Transformers for Protein Interface Contact Prediction." International Conference on Learning Representations (<u>ICLR</u> 2022).
- 3. **Morehead**, Alex, et al. "EGR: Equivariant graph refinement and assessment of 3D protein complex structures." arXiv preprint arXiv:2205.10390 (2022).
- 4. Shoman, Maged, et al. "A region-based deep learning approach to automated retail checkout." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
- 5. Lensink, Marc F., et al. "Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment." Proteins: Structure, Function, and Bioinformatics 91.12 (2023): 1658-1683.
- 6. Chen*, Xiao, **Morehead***, Alex, et al. "A gated graph transformer for protein complex structure quality assessment and its performance in CASP15." Bioinformatics 39.Supplement_1 (<u>ISMB</u> 2023): i308-i317.
- 7. **Morehead**, Alex, et al. "Towards Joint Sequence-Structure Generation of Nucleic Acid and Protein Complexes with SE (3)-Discrete Diffusion." NeurIPS Machine Learning in Structural Biology (MLSB) Workshop, 2023.
- 8. **Morehead**, Alex, et al. "DIPS-Plus: The enhanced database of interacting protein structures for interface prediction." Scientific Data 10.1 (2023): 509.

References (2)

- 9. **Morehead***, Alex, Watchanan Chantapakul*, and Jianlin Cheng. "Semi-supervised graph learning meets dimensionality reduction." 2023 International Conference on Machine Learning and Applications (ICMLA). IEEE, 2023.
- 10. Chen, Chen, et al. "3D-equivariant graph neural networks for protein model quality assessment." Bioinformatics 39.1 (2023): btad030.
- 11. Mahmud, Sajid, Alex **Morehead**, and Jianlin Cheng. "Accurate prediction of protein tertiary structural changes induced by single-site mutations with equivariant graph neural networks." bioRxiv (2023): 2023-10.
- 12. Soltanikazemi, Elham, et al. "DRLComplex: Reconstruction of protein quaternary structures using deep reinforcement learning." International Conference on Intelligent Biology and Medicine (2023).
- 13. Shanehsazzadeh, Amir, et al. "Unlocking de novo antibody design with generative artificial intelligence." BioRxiv (2023): 2023-01.
- 14. **Morehead**, Alex, and Jianlin Cheng. "Geometry-complete perceptron networks for 3D molecular graphs." Bioinformatics 40.2 (2024): btae087.
- 15. **Morehead**, Alex, and Jianlin Cheng. "Geometry-complete diffusion for 3D molecule generation and optimization." Communications Chemistry 7.1 (2024): 150.
- 16. **Morehead**, Alex, Jian Liu, and Jianlin Cheng. "Protein structure accuracy estimation using geometry-complete perceptron networks." Protein Science 33.3 (2024): e4932.

References (3)

- 17. Jamasb*, A. R., **Morehead***, A., et al. "Evaluating Representation Learning on the Protein Structure Universe." International Conference on Learning Representations (<u>ICLR</u> 2024).
- 18. **Morehead**, Alex, et al. "Deep Learning for Protein-Ligand Docking: Are We There Yet?." ICML 2024 AI for Science Workshop Spotlight.
- 19. Anand*, Rishabh, Joshi*, Chaitanya, **Morehead**, Alex, et al. "RNA-FrameFlow for de novo 3D RNA backbone design." ICML 2024 Workshop on Structured Probabilistic Inference & Generative Modeling (ICML 2024 SPIGM).
- 20. Joshi, Chaitanya K., et al. "gRNAde: Geometric Deep Learning for 3D RNA inverse design." International Conference on Learning Representations (ICLR 2025).
- 21. **Morehead**, Alex, and Jianlin Cheng. "FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction." Bioinformatics 39.Supplement_1 (<u>ISMB</u> 2025): i308-i317.
- 22. **Morehead**, Alex, et al. "Protein-ligand structure and affinity prediction in CASP16 using a geometric deep learning ensemble and flow matching." Proteins: Structure, Function, and Bioinformatics (2025).
- 23. **Morehead***, Alex, Jian Liu*, Pawan Neupane*, and Jianlin Cheng. "Artificial intelligence for biomolecular structure and interaction prediction: recent advances and challenges." In preparation for invited issue of Current Opinion in Structural Biology (2026).
- * denotes co-first-authorship (equal contribution)

Thank you!

Summary

- Geometric deep learning is a widely applicable toolkit for computational modeling of physical phenomena.
- Geometric and generative models are accelerating biochemical science.
- Large-scale deep learning efforts are poised to introduce new modalities for scientific inquiry within drug discovery and beyond.