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Presentation Overview
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Geometric Deep Learning 
(e.g., AlphaFold 2, 

Geometric Transformer, 
GCPNet)

Generative Models
(e.g., AlphaFold 3, 

GCDM,
FlowDock)

Biomolecule Design
(e.g., RFdiffusionAA,

GCDM-SBDD, 
PoseBench)

In this defense, we discuss three synergistic research 
areas that have recently experienced huge growth



What is Geometric Deep Learning?

3Reference: Bronstein et al. 2025, MIT Press



Key Ideas
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1. Symmetries in nature can be modeling precisely using 
bespoke neural networks

2. Many of the most common types of AI algorithms (e.g., 
Transformers) are symmetric

3. Modeling real-world data with geometric deep learning has 
yielded compelling results



Geometric Deep Learning Case Study
(AlphaFold 2)

5Reference: Jumper et al. 2021, Nature

A prime 
example of 
AI4Science!



Geometric Deep Learning Case Study
(Geometric Transformer)

6Reference: Morehead et al. 2022, ICLR

Deep graph 
learning for 
biomolecules



Geometric Deep Learning Case Study
(Geometric Transformer - Conformation Module)

7Reference: Morehead et al. 2022, ICLR

● The model uniquely learns representations of 
geometric line graphs for downstream predictions!



Geometric Deep Learning Case Study
(Geometric Transformer)

8Reference: Morehead et al. 2022, ICLR

● Geometric priors consistently improve 
predictions of atomic protein-protein interactions!

EPE: Edge Position Encoding; GFG: Geometric Feature Gating



Geometric Deep Learning Case Study
(Gated Graph Transformer)

9Reference: Chen*, Morehead*, et al. 2023, ISMB
*equal contribution

● Learnable gating also played an important role in follow-up 
work on (multi-chain) protein representation learning

h: Node-Level Features; e: Edge-Level Features



Geometric Deep Learning Case Study
(GCPNet)

10Reference: Morehead et al. 2024, Bioinformatics
A broadly applicable 
geometric graph neural network



Geometric Deep Learning Case Study
(GCPNet - GCP Module)

11Reference: Morehead et al. 2024, Bioinformatics

Physical priors 
come from 
scalarization!



Geometric Deep Learning Case Study
(GCPNet - Forward Pass)

12Reference: Morehead et al. 2024, Bioinformatics

So how does this model work?



Geometric Deep Learning Case Study
(GCPNet)

13Reference: Morehead et al. 2024, Bioinformatics

● Physical priors are necessary for 
geometric neural networks to 
understand molecular chirality!

Frames: Local Coordinate Frames; R/S: Right/Left



Geometric Deep Learning Case Study
(GCPNet)

14Reference: Morehead et al. 2024, Bioinformatics

● For complex physical (many-body) 
systems, learnable geometric frames 
enable more precise point predictions

Frames: Local Coordinate Frames; R/S: Right/Left



Geometric Deep Learning Case Study
(GCPNet)

15Reference: Morehead et al. 2024, Bioinformatics

● Each model component is 
important for accurately predicting 
protein-ligand binding affinities

Frames: Local Coordinate Frames; ResGCP: ResidualGCP



Geometric Deep Learning Case Study
(ProteinWorkshop)

16Reference: Jamasb*, Morehead*, et al. 2024, ICLR
*equal contribution

● GCPNet yielded excellent performance for inverse folding and 
protein-protein interaction prediction in a new standardized  
deep learning benchmark for protein representation learning



Geometric Deep Learning Case Study
(GCPNet-EMA)

17Reference: Morehead et al. 2024, Protein Science

● GCPNet has since also been adapted as a state-of-the-art estimator 
of the model accuracy (EMA) of predicted protein structures



What about Generative Modeling?

18Reference: Ramesh et al. 2022, arXiv



Key Ideas
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1. Most datasets can become the basis of a 
powerful generative model of that domain

2. Once trained, such a generative model can 
generate new (similar yet distinct) examples

3. Importantly, these algorithms can enable 
complex data analysis within scientific pipelines

Reference: Rombach et al. 2022, CVPR



Generative Modeling Case Study
(AlphaFold 3)

20Reference: Abramson et al. 2024, Nature

Representing all 
of life’s molecules 
with denoising 
diffusion



Generative Modeling Case Study
(GCDM)

21Reference: Morehead et al. 2024, Nature CommsChem

Learning 
geometric 
(vector) 
features for 
diffusion 
generation



Generative Modeling Case Study
(GCDM)

22Reference: Morehead et al. 2024, Nature CommsChem

● Neural network expressiveness 
enables more precise 3D molecule 
generation for property conditioning



Generative Modeling Case Study
(GCDM)

23Reference: Morehead et al. 2024, Nature CommsChem

● Neural network expressiveness for the first 
enables diffusion models to generate a sizeable 
fraction of valid large 3D molecules!



Generative Modeling Case Study
(GCDM)

24Reference: Morehead et al. 2024, Nature CommsChem

● Neural network expressiveness also yields 
consistent improvements in 3D molecule 
optimization of molecular properties



Generative Models Capture Molecular Details
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In the past two years, deep generative models have 
demonstrated the ability to produce realistic 
protein-binding conformations of ligand molecules

DiffDock-L (Corso et al. 2024) NeuralPLexer (Qiao et al. 2024)

References: Corso et al. 2024, ICLR; Qiao et al. 2024, NMI



Do Generative Models Learn Meaningful Features?
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Key Insight: Generative structure prediction models, when 
pre-trained on large datasets of biomolecules, learn meaningful 
features that are readily adapted for binding affinity estimation

NeuralPLexer (Qiao et al. 2024)

Reference: Qiao et al. 2024, NMI



We fine-tune 
NeuralPLexer as
our denoiser vθ

But What about Docking State Transitions?
→ Flow Matching in 3D

target

t=0 t = 1

x1

x0

noise

3D 
Coordinates
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The denoiser vθ predicts
3D coordinate updates

References: Chen et al. 2024, ICLR; Jing et al. 2024, ICML



Another Angle on Flow Matching
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Gaussian flow matching → a kingdom of potatoes?

References: Fjelde et al. 2024, Blog Post; Esser et al. 2024, ICML



Generative Modeling Case Study
(FlowDock)

29Reference: Morehead et al. 2025, ISMB

The first available deep learning (blind) docking 
method based on conditional flow matching



Generative Modeling Case Study
(FlowDock - PoseBusters)

30Reference: Morehead et al. 2025, ISMB

● FlowDock debuts as a lightweight and accurate 
generative model of biomolecular structures



Generative Modeling Case Study
(FlowDock - DockGen)

31Reference: Morehead et al. 2025, ISMB

● FlowDock matches or exceeds the generalization 
capabilities of previous state-of-the-art methods



Flow matching enables flexible docking via deep learning

Accurate Sampling Trajectories
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Crystal Structure of PDBBind 6I67
(True Affinity 6.70)

Generated Structure of PDBBind 6I67
(Predicted Affinity: 6.05)

Reference: Morehead et al. 2025, ISMB



Generative Modeling Case Study
(FlowDock - PDBBind)

33Reference: Morehead et al. 2025, ISMB

● This (fast) model can accurately predict both 
biomolecular structures and binding affinities!



Generative Modeling Case Study
(FlowDock - CASP16)

34Reference: Morehead et al. 2025, ISMB

Selected for an oral presentation at CASP16!



How does this impact Biomolecule Design?

35Reference: Joshi et al. 2025, ICLR



Key Ideas
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1. As geometric and generative models become 
more powerful, the number of promising 
biomolecule design use cases grows

2. Nonetheless, data quality (1) and quantity (2) can 
be rate limiters of successful design efforts

3. Pre-training on large (related) datasets can be a 
useful way to initialize a generative design model

Reference: Watson et al. 2023, Nature



Biomolecule Design Case Study
(RoseTTAFoldAA & RFdiffusionAA)

37Reference: Krishna et al. 2024, Science

Atomic 
biomolecule 
design is here!



Biomolecule Design Case Study
(RoseTTAFoldAA & RFdiffusionAA)

38Reference: Krishna et al. 2024, Science
Experimentally characterizing proteins 
designed for specific small molecules



Biomolecule Design Case Study
(GCDM-SBDD)

39Reference: Morehead et al. 2024, Nature CommsChem

● Finding: Molecule generation models can readily be 
repurposed as structure-based drug designers



Biomolecule Design Case Study
(GCDM-SBDD)

40

● Note: Most structure-based drug design methods 
based on generative modeling are primarily 
challenged with pocket design specificity

Reference: Morehead et al. 2024, Nature CommsChem



Biomolecule Design Case Study
(PoseBench)

41Reference: Morehead et al. 2024, ICML AI4Science (Spotlight)

● Intuition: An algorithm must be an accurate 
structure predictor before design is tractable



Biomolecule Design Case Study
(PoseBench - PoseBusters Benchmark)
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● Benchmarking results: AlphaFold 3 is currently the best 
structure predictor around, but not by a lot (and only 
with high-quality multiple sequence alignment inputs)

Reference: Morehead et al. 2024, ICML AI4Science (Spotlight)



Biomolecule Design Case Study
(PoseBench - CASP16 Benchmark)
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● Benchmarking results: In diverse (multi-molecule) use 
cases, AlphaFold 3 shines, yet it is still challenged to 
faithfully model crystalized protein-ligand interactions

Reference: Morehead et al. 2024, ICML AI4Science (Spotlight)



Biomolecule Design Case Study
(PoseBench - DockGen-E Benchmark)
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● Benchmarking results: Even for datasets overlapping 
with AlphaFold 3’s training data, uncommon prediction 
targets highlight the model’s room for improvement

Reference: Morehead et al. 2024, ICML AI4Science (Spotlight)



Biomolecule Design Case Study
(PoseBench - Failure Modes Analysis)
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● Analysis: Most of the time when AlphaFold 3 makes an 
inaccurate prediction, the prediction target is 
evolutionarily distinct from what the model has seen 

Reference: Morehead et al. 2024, ICML AI4Science (Spotlight)



Biomolecule Design Case Study
(PoseBench - Common Failure Modes)
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● Analysis: Even the best structure prediction methods 
such as AlphaFold 3 have trouble predicting several 
important classes of proteins

Reference: Morehead et al. 2024, ICML AI4Science (Spotlight)



Biomolecule Design Case Study
(MULTICOM_ligand)

47Reference: Morehead et al. 2025, Proteins (CASP16-Invited Issue)

● Finding: An unsupervised best-of-N deep learning ensemble performs 
remarkably well compared to specialist (singular) prediction algorithms



Biomolecule Design Case Study
(MULTICOM_ligand)
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● Overview: How does this ensemble work?

Reference: Morehead et al. 2025, Proteins (CASP16-Invited Issue)



Biomolecule Design Case Study
(MULTICOM_ligand)
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● Evaluation: How well does this ensemble do in a (CASP16) blind assessment?

Reference: Morehead et al. 2025, Proteins (CASP16-Invited Issue)



Biomolecule Design Case Study
(MULTICOM_ligand)
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● Capabilities: How well can this method predict binding affinities?

Reference: Morehead et al. 2025, Proteins (CASP16-Invited Issue)



Biomolecule Design Case Study
(MULTICOM_ligand)
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● Analysis: How do this method’s (best and worst) predictions look?

Reference: Morehead et al. 2025, Proteins (CASP16-Invited Issue)



1. Developing proper benchmarks and evaluation metrics for deep learning-based 
structure prediction and design methods requires dual computing and life 
science expertise

2. Evaluating the performance of structure-based drug design methods is 
bottlenecked by the rate of wet lab experiments a group can complete

3. Whether, and the extent to which, deep learning methods for biochemical data 
can generalize to novel types of biomolecules are open questions for the field

Interdisciplinary Challenges

52



1. Exploring the design space of biomolecular diffusion models could be a 
powerful new means of drug discovery

2. Neural network expressiveness could be more strongly characterized and linked 
to the (in)capabilities of today’s bio-generative models

3. Generative modeling is primed for innovation from the perspective of biophysical 
priors and conditional flow matching

Future Directions

53



1. This PhD dissertation has yielded 8 first-author publications (with 3 additional 
papers either currently in review or released as a preprint) and has contributed 
to 20+ peer-reviewed works overall (including one NIH grant proposal)

2. These first-author (+co-first-author) publications include 2 (+2) works presented 
at top CS conferences (according to CSRankings) including the International 
Conference on Learning Representations (ICLR) and Intelligent Systems for 
Molecular Biology (ISMB) and 2 works published in Nature Portfolio journals

Dissertation Outcomes (1)

54



1. To date, this dissertation’s associated papers have garnered 450+ citations and 
inspired multiple follow-up works in machine learning (GearNet - ICLR 2023 
2023) and generative modeling (RNA-FrameFlow - ICML 2024 SPIGM)

2. Further, this dissertation has been awarded the Berkeley Lab’s 2025 Admiral 
Grace Hopper Postdoctoral Fellowship in Computing Sciences

Dissertation Outcomes (2)
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Thank you!
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Website GitHub

● Geometric deep learning is a 
widely applicable toolkit for 
computational modeling of physical 
phenomena.

● Geometric and generative models 
are accelerating biochemical 
science.

● Large-scale deep learning efforts 
are poised to introduce new 
modalities for scientific inquiry 
within drug discovery and beyond.

Summary


