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Presentation Overview

Geometric Deep Learning Generative Models Biomolecule Design
(e.g., AlphaFold 2, (e.g., AlphaFold 3, (e.g., RFdiffusionAA,
Geometric Transformer, GCDM, GCDM-SBDD,
GCPNet) FlowDock) PoseBench)

In this defense, we discuss three synergistic research
areas that have recently experienced huge growth



Grids Groups Graphs Geodesics & Gauges

What is Geometric Deep Learning?

Reference: Bronstein et al. 2025, MIT Press



Key ldeas

Symmetries in nature can be modeling precisely using
bespoke neural networks

Many of the most common types of Al algorithms (e.g.,
Transformers) are symmetric

Modeling real-world data with geometric deep learning has
yielded compelling results




Geometric Deep Learning Case Study
(AlphaFold 2)
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Reference: Jumper et al. 2021, Nature



Geometric Deep Learning Case Study
(Geometric Transformer)

Geometric Transformer

Deep graph
learning for
biomolecules
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Reference: Morehead et al. 2022, ICLR



Geometric Deep Learning Case Study
(Geometric Transformer - Conformation Module)

Geometric Transformer
Con formation Module
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e The model uniquely learns representations of
geometric line graphs for downstream predictions!

Reference: Morehead et al. 2022, ICLR



Geometric Deep Learning Case Study

(Geometric Transformer)

19 (Both Types)

Method P@10 P@L/10 P@L/5 R@L R@L/2 R@L/5
BI 0.01 0 0.01 0.02 0.01 0.001
DI (GCN) 0.12 (0.04) 0.10 (0.05) 0.09 (0.04) 0.11 (0.001)  0.06 (0.01) 0.02 (0.01)
DI (GT) 0.10 (0.03) 0.09 (0.03) 0.08 (0.02) 0.11 (0.02) 0.06 (0.01) 0.02 (0.01)
DI (GeoT w/o EPE) 0.13 (0.02) 0.14 (0.03) 0.13 (0.02) 0.12 (0.01) 0.07 (0.01) 0.03 (0.01)
DI (GeoT w/o GFG)  0.11 (0.01) 0.12 (0.02) 0.10 (0.02) 0.11 (0.01) 0.06 (0.01) 0.03 (0.01)

DI (GeoT)

0.21(0.01) 0.19(0.01) 0.14 (0.01) 0.13(0.02) 0.08(0.01)

0.04 (0.003)

Reference: Morehead et al. 2022, ICLR

e (Geometric priors consistently improve
predictions of atomic protein-protein interactions!

EPE: Edge Position Encoding; GFG: Geometric Feature Gating



Geometric Deep Learning Case Study
(Gated Graph Transformer)
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e [earnable gating also played an important role in follow-up
work on (multi-chain) protein representation learning

Reference: Chen*, Morehead*, et al. 2023, ISMB h: Node-Level Features; e: Edge-Level Features 9
*equal contribution



Geometric Deep Learning Case Study

(GCPNet)

ii. Geometry—Complete Graph Convolution with GCPNet
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Reference: Morehead et al. 2024, Bioinformatics

geometric graph neural network 10



Geometric Deep Learning Case Study
(GCPNet - GCP Module)
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Physical priors
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scalarization!
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Reference: Morehead et al. 2024, Bioinformatics 11



Geometric Deep Learning Case Study
(GCPNet - Forward Pass)

Algorithm 1. GCPNEet

Require: (h; € H, ;€ 2), (6j €E, & € &), xi € X, graph G

1: Initialize X° = X¢ — Centralize(X)

2: Fjj = Localize(x; € X°, x; € X°)

3: Project (0, 1), (€3, &}) — GCPo((hi, 1,), (8j> &), Fi)
4:for /=1to L do

5 (A, 1), X = GCPConv!((A", 25Y), (6], &), ", )

6: end for
7: if Updating Node Positions then
8:  Fk=Localize(x; € X/, x; € X')
9:  Finalize (X!) — Decentralize(X/)
10: else
1 % =%
12: end if

13: Project (hf, zb), (6%, &) — GCP,((H., 1)), (€3, &), F¥)

< FRL. eL
Ensure: (hf, x5), (65, &), Xt

So how does this model work?

Reference: Morehead et al. 2024, Bioinformatics



Geometric Deep Learning Case Study
(GCPNet)

Type Method Symmetries R/S Accuracy (%) 1

INN ChIRo (Schneuing et al. 2022) SE(3) 98.5
SchNet (Schneuing et al. 2022) E(3) 54.4
DimeNet++ (Schneuing et al. 2022) E(3) 65.7
SphereNet (Schneuing et al. 2022) SE(3) 98.2

ENN EGNN (Schneuing et al. 2022) E(3) 50.4
SEGNN (Schneuing et al. 2022) SE(3) 83.4

Ours GCPNEeT w/o Frames E(3) 50.2+0.6
GCPNEeT SE(3) 98.7 +0.1

Reference: Morehead et al. 2024, Bioinformatics

e Physical priors are necessary for
geometric neural networks to
understand molecular chirality!

Frames: Local Coordinate Frames; R/S: Right/Left

13



Geometric Deep Learning Case Study

(GCPNet)

Method ES(5)

ES(20) G+ES(20) L+ES(20) Average

GNN (Du et al. 2022) 0.0131

TFN (Du et al. 2022) 0.0236
SE(3)-Transformer 0.0329

(Du et al. 2022)

Radial Field (Du 0.0207
etal.2022)

PaiNN 0.0158

ET 0.1653

EGNN (Du 0.0079
et al. 2022)

ClofNet (Du 0.0065
et al. 2022)

GCPNET w/o Frames 0.0067
GCPNET w/o REsGCP 0.0090
GCPNET w/o Scalars  0.0119
GCPNET 0.0070

0.0720
0.0794
0.1349

0.0377

N/A
0.1788
0.0128

0.0073

0.0074
0.0135
0.0173
0.0071

0.0721
0.0845
0.1000

0.0399

N/A
0.2122
0.0118

0.0072

0.0074
0.0099
0.0170
0.0073

0.0908
0.1243
0.1438

0.0779

N/A
0.2989
0.0368

0.0251

0.0200
0.0278
0.0437
0.0173

0.0620
0.0780
0.1029

0.0441

N/A
0.2138
0.0173

0.0115

0.0103
0.0150
0.0225
0.0097

e For complex physical (many-body)
systems, learnable geometric frames
enable more precise point predictions

Reference: Morehead et al. 2024, Bioinformatics

Frames: Local Coordinate Frames; R/S: Right/Left

14



Geometric Deep Learning Case Study
(GCPNet)

Type Method RMSE | Pl Sp1
CNN 3DCNN (Wang et al. 2023b 1.416 £0.021 0.550 0.553
DeepDTA (Wang et al. 2023b 1.866 +0.080 0.472 0.471
DeepAffinity (Aykent and Xia 2022) 1.893:0.650 0.415 0.426
RNN Bepler and Berger (Wang et al. 2023b 1.985 +0.006 0.165 0.152
TAPE (Wang et al. 2023b) 1.890£0.035 0.338 0.286
ProtTrans (Wang et al. 2023b 1.544+0.015 0.438 0.434
GNN GCN (Wang et al. 2023b) 1.601£0.048 0.545 0.533
DGAT (Aykent and Xia 2022 1.719£0.047 0.464 0.472
DGIN (Avykent and Xia 2022) 1.765+0.076 0.426 0.432
DGAT-GCN (Aykent and Xia 2022 1.550+0.017 0.498 0.496 H
NOSIF (Wong et D003t 143420018 0467 s o [Each model component is
IEConv (Wang et al. 2023b 1.554+0.016 0.414 0.428
Holoprot-Full Surface (Wang et al. 2023b 1.464 +0.006 0.509 0.500 H H H
Holoprot-Superpixel (Wang et al. 2023b) 1.491+0.004 0.491 0.482 Im pO rtant fO r accu rately p red | Ctl Nn g
ProNet-Amino-Acid (Wang et al. 2023b) 1.455+0.009 0.536 0.526
ProNet-Backbone (Wang et al. 2023b 1.458£0.003 0.546 0.550 rotei n I i an d bi nd i n aﬁi n i_t i eS
ProNet-All-Atom (Wang et al. 2023b) 1.463£0.001 0.551 0.551 - g g
GeoSSL-DDM (Liu et al. 2023 1.451£0.030 0.577 0.572 p
ENN Cormorant (Aykent and Xia 2022 1.568+0.012 0.389 0.408
PaiNN 1.698 £ 0.050 0.366 0.358
ET 1.490+0.019 0.564 0.532
GVP (Aykent and Xia 2022 1.594+0.073 0.434 0.432
GBP (Aykent and Xia 2022 1.405 +0.009 0.561 0.557
Ours GCPNET w/o Frames 1.485+0.015 0.521 0.504
GCPNET w/o ResGCP 1.514£0.008 0.471 0.468
GCPNET w/o Scalars 1.685 +0.000 0.050 0.000
GCPNET w/o Vectors 1.727 £0.005 0.270 0.304
GCPNEeT 1.352+0.003 0.608 0.607

Reference: Morehead et al. 2024, Bioinformatics Frames: Local Coordinate Frames; ResGCP: ResidualGCP 15



Geometric Deep Learning Case Study
(ProteinWorkshop)
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e GCPNet yielded excellent performance for inverse folding and

protein-protein interaction prediction in a new standardized
deep learning benchmark for protein representation learning

Reference: Jamasb*, Morehead*, et al. 2024, ICLR

*equal contribution



Geometric Deep Learning Case Study
(GCPNet-EMA)

Fast Protein Structure EMA with GCPNet

i. Atomic Point Cloud Construction ii. Geometry — Complete Convolution iii. EMA Predictions '

Nodes: (h, x) il - " r/\ AT
Edges: (e, §) => £ ‘\‘ A% K.’, Lx \\ % : :>

Frames: F;;

ii. Structure Denoising — Pretraining on AlphaFold DB Clusters

e GCPNet has since also been adapted as a state-of-the-art estimator
of the model accuracy (EMA) of predicted protein structures

Reference: Morehead et al. 2024, Protein Science

2. Per-Model -

17
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What about Generative Modeling?

Reference: Ramesh et al. 2022, arXiv



Key ldeas

1. Most datasets can become the basis of a
powerful generative model of that domain

2. Once trained, such a generative model can ﬂ

uJ

generate new (similar yet distinct) examples L

Pixel Space
pd

3. Importantly, these algorithms can enable
complex data analysis within scientific pipelines

Reference: Rombach et al. 2022, CVPR
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Generative Modeling Case Stu
(AlphaFold 3)
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Reference: Abramson et al. 2024, Nature

Diffusion iteration:

Representing all
of life’s molecules
with denoising
diffusion

20



Generative Modeling Case Study
(GCDM)

iv. Geometry—Complete Diffusion Generation with GCPNet + +

Nodes: (h, x)

Q7 (Al
b :{>Edges: (e,€) ‘:‘J>

Frames: F;;

Reference: Morehead et al. 2024, Nature CommsChem

Learning
geometric
(vector)
features for
diffusion
generation

21



Generative Modeling Case Study
(GCDM)

Task al Acel €romol € umol Ml C,l
Units Bohr® meV meV meV D ]
Naive (Upper-bound) 9.01 1470 645 1457 1616 6.857

# Atoms 3.86 866 426 813 1.053 1.971
EDM 2.76 655 356 584 1.111 1.101
GeolLDM 2.37 587 340 522 1.108 1.025
GCDM 1.97 602 344 479 0.844 0.689
QM9 (Lower-bound) 0.10 64 39 36 0.043 0.040
Task al Ael €nomol €Lumol Ml Cyl

Units Bohr® meV meV meV D o
GeolLDM 2.77+0412 655 +20.57 357 +5.68 565+ 10.62 1.089 + 0.02 1.070+0.04
GCDM 1.99+0.01 595+ 14.34 346 +1.23 480 + 6.58 0.855 +0.00 0.698 + 0.01

e Neural network expressiveness
enables more precise 3D molecule
generation for property conditioning

Reference: Morehead et al. 2024, Nature CommsChem

22



Generative Modeling Case Study
(GCDM)

Type Method NLL | AS (%) 1 MS (%) 1
NF E-NF - 75.0 0.0
DDPM GDM —14.2 75.0 0.0
GDM-aug —58.3 LRI 0.0
EDM —137.1 81.3 0.0
Bridge - 81.0+0.7 0.0
Bridge + Force - 82.4+0.8 0.0
LDM GraphLDM - 76.2 0.0
GraphLDM-aug - 79.6 0.0
GeolLDM - 84.4 0.0
GC-DDPM—Ours GCDM w/o Frames 769.7 88.0+0.3 34+03
GCDM w/o SMA 3505.5 439+3.6 0.1+0.0
GCDM —234.3 89.0+0.8 52+1.1
Data 86.5 2.8
Method NLL | AS (%) 1 MS (%) 1 Val (%) 1 Val and Uniq (%) 1 Novel (%) t PB-Valid (%) 1
GeoLDM - 84.4+0.1 0.6+0.1 99.5+0.1 99.40.1 - 38305
GCDM —215.1+3.38 88.1+0.1 43:04 95.5+0.1 95.5+0.1 95.5+0.1 77.0+0.1

e Neural network expressiveness for the first
enables diffusion models to generate a sizeable
fraction of valid large 3D molecules!

Reference: Morehead et al. 2024, Nature CommsChem 23



Generative Modeling Case Study
(GCDM)

[l s

I Initial Samples (Moderately Stable)
= EDM-Opt (100 steps)

[ EDM-Opt (250 steps)

BN GCDM-Opt (100 steps)

IS GCDM-Opt (250 steps)

0 1 2 3 4 5
Property MAE / Molecule Stability (MS) %

e Neural network expressiveness also yields
consistent improvements in 3D molecule
optimization of molecular properties

Reference: Morehead et al. 2024, Nature CommsChem



Generative Models Capture Molecular Details

3 2im < pb@
o & = Y ©

DiffDock-L (Corso et al. 2024) NeuraIPLexer (Qiao et al. 2024)

4

In the past two years, deep generative models have
demonstrated the ability to produce realistic
protein-binding conformations of ligand molecules

References: Corso et al. 2024, ICLR; Qiao et al. 2024, NMI 25



Do Generative Models Learn Meaningful Features?

Folding networks [Block adjacencies
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Molecular  Experimental
conformers structures (PDB)

NeuralPLexer (Qiao et al. 2024)

Key Insight: Generative structure prediction models, when
pre-trained on large datasets of biomolecules, learn meaningful
features that are readily adapted for binding affinity estimation

Reference: Qiao et al. 2024, NMI



But What about Docking State Transitions?
— Flow Matching in 3D

t
noise v&?&ﬂ:‘ target
'
\ 1
, . ' ! We fine-tune
The denoiser v, predicts NN ! N PL
. euralPLexer as
3D coordinate updates 1% _
X, ¢ 3D our denoiser v,
Coordinates
=0 =1

References: Chen et al. 2024, ICLR; Jing et al. 2024, ICML



Another Angle on Flow Matching

Gaussian flow matching — a kingdom of potatoes?

References: Fjelde et al. 2024, Blog Post; Esser et al. 2024, ICML 28



Generative Modeling Case Study
(FlowDock)

y FlowDock \\\

All-Atom Complex
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The first available deep learning (blind) docking
Reference: Morehead et al. 2025, ISMB method based on conditional flow matching
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Generative Modeling Case Study
(FlowDock - PoseBusters)

No post-processing With relaxation
[ RMSD = 2A RMSD = 2A
m=m RMSD < 2A & PB-Valid RMSD =< 2A & PB-Valid
100%
85.785.5
81.881.8 k=]
£ 80% NN \
k] 731 73.0
% L 69.6 7\14169.0 HT‘70A7 - 69.068.6 70.870.4
g N\ N I N 64.0 —_— i
a \ ~ NN
= \ AN ! N
g \ S\ N\
£ N N \ 47.9 N |‘
g NN :\;44'6 43.0 N N
& NN b | \ :r k;
0%  30.530.5 \ L340 N N \ 34.6
28.828.8 N NN 29.8 NN s
- \ B3 25
20% i | \
7.5 N
.\ - N
0% P2Rank-Vina DiffDock-L DynamicBind RoseTTAFold-AA  AF3-Single-Seq  Chai-1-Single-Seq  NeuralPLexer FlowDock-HP FlowDock-AFT  FlowDock-ESMFold FlowDock-Chai-1 FlowDock-AF3

® FlowDock debuts as a lightweight and accurate A
generative model of biomolecular structures ' %

Reference: Morehead et al. 2025, ISMB



Generative Modeling Case Study

(FlowDock - DockGen)

oooooo -processing
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©
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® FlowDock matches or exceeds the generalization
capabilities of previous state-of-the-art methods

Reference: Morehead et al. 2025, ISMB
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Accurate Sampling Trajectories

Generated Structure of PDBBIind 6167 Crystal Structure of PDBBIind 6167
(Predicted Affinity: 6.05) (True Affinity 6.70)

Flow matching enables flexible docking via deep learning

Reference: Morehead et al. 2025, ISMB 32



Generative Modeling Case Study
(FlowDock - PDBBind)

Method Pearson (1) Spearman (1) RMSE ({) MAE ({)
GIGN 0.286 0.318 1.736 1.330
TransformerCPI 0.470 0.480 1.643 1.317
MONN 0.545 0.535 1.371 1.103
TankBind 0.597 0.610 1.436 1.119
DynamicBind (One-Shot) 0.665 0.634 1.301 1.060
FrowDock-HP 0.577 +£0.001 | 0.560 +0.001 | 1.516 +0.001 | 1.196 + 0.002
FrowDock-AFT 0.663 + 0.003 | 0.624 +0.003 | 1.392 4+ 0.005 | 1.113 4 0.003
FlowDock 0.705 + 0.001 | 0.674 4+ 0.002 | 1.3634+0.003 | 1.067+0.003
Method Runtime (s) CPU Memory Usage (GB) GPU Memory Usage (GB)
P2Rank-Vina 1,283.70 9.62 0.00
DiffDock-L 88.33 8.99 70.42
DynamicBind 146.99 5.26 18.91
RoseTTAFold-All-Atom 3,443.63 55.75 72.79
AF3 3,049.41 - -
AF3-Single-Seq 58.72 - -
Chai-1-Single-Seq 114.86 58.49 56.21
NeuralPLexer 29.10 1119 31.00
FlowDock 39.34 11.98 25.61

® This (fast) model can accurately predict both
biomolecular structures and binding affinities!

Reference: Morehead et al. 2025, ISMB

33



enerative Modeling Case Study
(FlowDock - CASP16)

0.5

== Top Performer
=== Worst Performer
mmm Ours - FlowDock

0.26

002 002 002 002 g0 g
)

0.01
-0.03

Selected for an oral presentation at CASP16!

Affinities: N-Weighted Kendall's Tau
s
i

0.09

Method, Number of Predictions (N)

Reference: Morehead et al. 2025, ISMB
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Fixed backbone
re-design

Multi-state
Graph Neural

Extract Sequence

GAGCGU. . .

Backbones Network Decoder
" Encoder RNA
Sequence
Equivariant to:
RNA Conformational Set of Backbone AR rGuEER0S
; * node order
Ensemble Geometric Graphs s conformationiorder

How does this impact Biomolecule Design?

Reference: Joshi et al. 2025, ICLR
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Key ldeas

1. As geometric and generative models become
more powerful, the number of promising
biomolecule design use cases

2. Nonetheless, data (1) and (2)can e
be rate limiters of successful design efforts i }% 8% %@%ﬁ%}%
3. Pre-training on large (related) datasets can be a
useful way to a generative design model ™" ¢
X, X, interp(X,, X,) — X

Reference: Watson et al. 2023, Nature 36



Biomolecule Design Case Study
(RoseTTAFoldAA & RFdiffusionAA)

Protein Nucleic acid Metal ion Small Covalently

sequence sequence molecule modified residue
L | | 1 |
[

RoseTTAFold All-Atom

Atomic
biomolecule
design is herel

Reference: Krishna et al. 2024, Science 37



Biomolecule Design Case Study
(RoseTTAFoldAA & RFdiffusionAA)
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Reference: Krishna et al. 2024, Science . ‘e
designed for specific small molecules
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Biomolecule Design Case Study
(GCDM-SBDD)

(a) 2FKY: -8.7 Vina (b) 2FKY: -9.7 Vina (c) 4Z2G: -8.2 Vina (d) 4Z2G: -8.7 Vina

® Finding: Molecule generation models can readily be
repurposed as siructure-based drug designers

Reference: Morehead et al. 2024, Nature CommsChem
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Biomolecule Design Case Study
(GCDM-SBDD)

@ .
o /
O
g .
® Note: Most structure-based drug design methods

based on generative modeling are primarily
challenged

Reference: Morehead et al. 2024, Nature CommsChem

40



Biomolecule Design Case Study
(PoseBench)

Binding Site Molecular
21 Docki : ;
1@? PoseBusters PG SCH For Primary Ligands:
~ - - ~ Sequence Generalization
Conventional Algorithms
Pri Ligand Protein C I [ ) ﬁ
rimary Ligand Protein Complexes
Protein-Fixed | Protein-Flexible I:"> ::> &
L ) - 66%
¢ DL Docking Methods 7 69
‘;‘ L L L For Multi-Ligands:
P i _TaPA Chemical Specificity
15 @ Open-Source Commercial 7 %:(c;/«
il <) %~ =
\ J D
Multi-Ligand Protein Complexes DL Co-Folding Methods Multi-Ligand Blind Docking
46%
Protein-Ligand Structure Datasets Structure Prediction Methods Modeling Tasks Key Insights

® |[ntuition: An algorithm must be an accurate
structure predictor

Reference: Morehead et al. 2024, ICML Al4Science (Spotlight)
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® Benchmarking results: AlphaFold 3 is currently the best

(and only

with high-quality multiple sequence alignment inputs)

structure predictor around,

42

Reference: Morehead et al. 2024, ICML Al4Science (Spotlight)



Biomolecule Design Case Study
(PoseBench - CASP16 Benchmark)

=
=)
2
=

1
—Zzz e
7

it
7%
b

<
-
=

Multi-ligand blind

® Benchmarking results: In diverse (multi-molecule) use

to

, yet it is still

faithfully model crystalized protein-ligand interactions

cases, AlphaFold 3
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Reference: Morehead et al. 2024, ICML Al4Science (Spotlight)
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Biomolecule Design Case Study
(PoseBench - DockGen-E Benchmark)

s32 MG
- i <

4. m
S s
3 &
IQ
=
@
i)

Tx

P

& =

H

7 s 5
N & -

237 hm

13 20 44
oo BESSTZENN
P2Rank-Vina

® Benchmarking results: Even for datasets overlapping

prediction

the model’s room for improvement

with AlphaFold 3’s training data,

targets

44

Reference: Morehead et al. 2024, ICML Al4Science (Spotlight)



Biomolecule Design Case Study
(PoseBench - Failure Modes Analysis)

204

159

10 1

® Analysis: Most of the time when AlphaFold 3 makes an

inaccurate prediction, the prediction target is
from what the model has seen

Reference: Morehead et al. 2024, ICML Al4Science (Spotlight)
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Biomolecule Design Case Study
(PoseBench - Common Failure Modes)

(a) Biosynthetics (RFAA) (b) Immune Proteins (AF3) (c) Novel Proteins (AF3)

® Analysis: Even the best structure prediction methods

such as AlphaFold 3 have trouble predicting scveral
important classes of proteins

Reference: Morehead et al. 2024, ICML Al4Science (Spotlight) 46



Biomolecule Design Case Study
(MULTICOM ligand)

Protein- Protein-
Fixed Flexible

For Single-Ligands:
+Structural Filters

=> | ¥rPoseBusters | => Re'-:faﬂnang =

[ For Multi-Ligands: ‘ &

DL Docking Methods For Confidence & Affinity:

+FlowDock Scores

=>

Predictive |Generative

+Clash Filters C&
o = 1st
Proteir Ligand DL Co-Folding Methods Structural Consensus Ranking  Structural & Chemical Checks d]:l
Complex Sequences Re-ranking
Protein-Ligand Inputs Structure Prediction Methods Ranking Heuristics Ligand Pose Filters Selected Poses Confidence & Affinity Prediction
® Finding: An unsupervised deep learning ensemble performs

remarkably well compared to specialist (singular) prediction algorithms

Reference: Morehead et al. 2025, Proteins (CASP16-Invited Issue)
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Biomolecule Design Case Study
(MULTICOM ligand)

Algorithm 1 MULTICOM _ligand for protein-ligand structure and affinity prediction
Notation: (X: intermediate protein or protein-ligand structure; X: final protein-ligand structure; B: binding affinity,

¢: confidence score)

: Input: Protein sequence and ligand SMILES string (S, M)
: Predict X"t « ESMFold(S)

: Sample X9 « DiffDock-L(S, M, X/™t)

: Sample X9 «— DynamicBind(S, M, X/it)

: Sample X" « NeuralPLexer(S, M, Xnit)

: Predict X"72? «— RoseTTAFold-All-Atom(S, M)

: Rank X©°" « StructureConsensus (X 99-db.np.rfaa)

: Bust Xt « PoseBustersFilters(Xc°")

. if Is Multi-Ligand then

Clash Bust X%“st « ClashFilters(X®st)

: end if

: Finalize X, €, B « FlowDockAssess(S, M, X bust)

: Output: Sampled top-5 heavy-atom structures X with confidence scores ¢ and binding affinities B

P O
w N = O

® QOverview: How does this ensemble ?

Reference: Morehead et al. 2025, Proteins (CASP16-Invited Issue)



Biomolecule Design Case Study

(MULTICOM _ligand)
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® Evaluation: How well does this ensemble do in a (CASP16)

Reference: Morehead et al. 2025, Proteins (CASP16-Invited Issue)

assessment?
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Biomolecule Design Case Study
(MULTICOM._ligand)
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® (Capabilities: How well can this method predict

Reference: Morehead et al. 2025, Proteins (CASP16-Invited Issue)
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Biomolecule Design Case Study
(MULTICOM._ligand)

(@) RMSD=0.510 (b) RMSD=0.603 (c) RMSD=4.244

® Analysis: How do this method’s (best and worst) predictions look?

Reference: Morehead et al. 2025, Proteins (CASP16-Invited Issue) 51



Interdisciplinary Challenges

Developing proper benchmarks and evaluation metrics for deep learning-based
structure prediction and design methods requires dual computing and life
science expertise

Evaluating the performance of structure-based drug design methods is
bottlenecked by the rate of wet lab experiments a group can complete

Whether, and the extent to which, deep learning methods for biochemical data
can to novel types of biomolecules are open questions for the field
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Future Directions

Exploring the design space of biomolecular difftusion models could be a
powerful new means of drug discovery

Neural network expressiveness could be more strongly characterized and linked
to the (in)capabilities of today’s bio-generative models

Generative modeling is primed for innovation from the perspective of
priors and conditional flow matching

53



Dissertation Outcomes (1)

1. This PhD dissertation has yielded 8 first-author publications (with 3 additional
papers either currently in review or released as a preprint) and has contributed
to 20+ peer-reviewed works overall (including one NIH grant proposal)

2. These first-author (+co-first-author) publications include 2 (+2) works presented
at top CS conferences (according to CSRankings) including the International
Conference on Learning Representations (ICLR) and Intelligent Systems for
Molecular Biology (ISMB) and 2 works published in Nature Portfolio journals
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Dissertation Outcomes (2)

To date, this dissertation’s associated papers have garnered citations and
inspired multiple in machine learning (GearNet -
2023) and generative modeling (RNA-FrameFlow - )

Further, this dissertation has been awarded the Berkeley Lab’s 2025 Admiral
Grace Hopper Postdoctoral Fellowship in Computing Sciences

55



References (1)

Gao, Mu, et al. "High-performance deep learning toolbox for genome-scale prediction of protein structure and
function." 2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC).
IEEE, 2021.

Morehead, Alex, Chen Chen, and Jianlin Cheng. "Geometric Transformers for Protein Interface Contact Prediction."
International Conference on Learning Representations (ICLR 2022).

Morehead, Alex, et al. "EGR: Equivariant graph refinement and assessment of 3D protein complex structures." arXiv
preprint arXiv:2205.10390 (2022).

Shoman, Maged, et al. "A region-based deep learning approach to automated retail checkout." Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

Lensink, Marc F., et al. "Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI
experiment." Proteins: Structure, Function, and Bioinformatics 91.12 (2023): 1658-1683.

Chen*, Xiao, Morehead*, Alex, et al. "A gated graph transformer for protein complex structure quality assessment and
its performance in CASP15." Bioinformatics 39.Supplement_1 (ISMB 2023): i308-i317.

Morehead, Alex, et al. "Towards Joint Sequence-Structure Generation of Nucleic Acid and Protein Complexes with SE
(3)-Discrete Diffusion." NeurlPS Machine Learning in Structural Biology (MLSB) Workshop, 2023.

Morehead, Alex, et al. "DIPS-Plus: The enhanced database of interacting protein structures for interface prediction."

Scientific Data 10.1 (2023): 509. -



10.

11.

12.

13.

14.

15.

16.

References (2)

Morehead*, Alex, Watchanan Chantapakul*, and Jianlin Cheng. "Semi-supervised graph learning meets dimensionality
reduction." 2023 International Conference on Machine Learning and Applications (ICMLA). IEEE, 2023.

Chen, Chen, et al. "3D-equivariant graph neural networks for protein model quality assessment." Bioinformatics 39.1
(2023): btad030.

Mahmud, Sajid, Alex Morehead, and Jianlin Cheng. "Accurate prediction of protein tertiary structural changes induced
by single-site mutations with equivariant graph neural networks." bioRxiv (2023): 2023-10.

Soltanikazemi, Elham, et al. "DRLComplex: Reconstruction of protein quaternary structures using deep reinforcement
learning." International Conference on Intelligent Biology and Medicine (2023).

Shanehsazzadeh, Amir, et al. "Unlocking de novo antibody design with generative artificial intelligence." BioRxiv (2023):

2023-01.

Morehead, Alex, and Jianlin Cheng. "Geometry-complete perceptron networks for 3D molecular graphs."
Bioinformatics 40.2 (2024): btae087.

Morehead, Alex, and Jianlin Cheng. "Geometry-complete diffusion for 3D molecule generation and optimization."
Communications Chemistry 7.1 (2024): 150.

Morehead, Alex, Jian Liu, and Jianlin Cheng. "Protein structure accuracy estimation using geometry-complete
perceptron networks." Protein Science 33.3 (2024): e4932.

57



17.

18.

19.

20.

21.

22.

23.

References (3)

Jamasb*, A. R., Morehead*, A, et al. "Evaluating Representation Learning on the Protein Structure Universe."
International Conference on Learning Representations (ICLR 2024).

Morehead, Alex, et al. "Deep Learning for Protein-Ligand Docking: Are We There Yet?." ICML 2024 Al for Science
Workshop Spotlight.

Anand*, Rishabh, Joshi*, Chaitanya, Morehead, Alex, et al. "RNA-FrameFlow for de novo 3D RNA backbone design."
ICML 2024 Workshop on Structured Probabilistic Inference & Generative Modeling (ICML 2024 SPIGM).

Joshi, Chaitanya K., et al. "gRNAde: Geometric Deep Learning for 3D RNA inverse design." International Conference on
Learning Representations (ICLR 2025).

Morehead, Alex, and Jianlin Cheng. "FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and
Affinity Prediction." Bioinformatics 39.Supplement_1 (ISMB 2025): i308-i317.

Morehead, Alex, et al. "Protein-ligand structure and affinity prediction in CASP16 using a geometric deep learning
ensemble and flow matching." Proteins: Structure, Function, and Bioinformatics (2025).

Morehead*, Alex, Jian Liu*, Pawan Neupane*, and Jianlin Cheng. “Artificial intelligence for biomolecular structure and
interaction prediction: recent advances and challenges.” In preparation for invited issue of Current Opinion in Structural
Biology (2026).

* denotes co-first-authorship (equal contribution)

58



Summary

Geometric deep learning is a
widely applicable toolkit for
computational modeling of physical
phenomena.

Geometric and generative models
are accelerating biochemical
science.

are poised to introduce new
modalities for scientific inquiry
within drug discovery and beyond.
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