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ABSTRACT

Life’s molecules, ranging from small molecule ligands to large polymer proteins,

are intricately responsible for the biomolecular functions that maintain life within

and beyond a single cell. Nonetheless, such biomolecules and their structural roles in

cellular biology remain poorly understood at the genomic scale owing to their com-

plex inter-atomic interactions, necessitating the development of new computational

methods for studying biomolecules at the atomic level.

To address this issue, in this dissertation, I describe the development of a collection

of deep learning methods (Geometric Transformers, GCPNet, GCDM, and

FlowDock) for modeling increasingly complex biomolecular structures and interac-

tions. These methods have advanced the state-of-the-art of deep learning in protein

and biomolecular representation learning, generative modeling of 3D molecules, and

protein-ligand structure and affinity prediction. Additionally, in this dissertation, I

detail the design and results of a new deep learning benchmark (PoseBench) and

ensembling prediction method (MULTICOM ligand) for standardized and broadly

applicable protein-ligand docking and structure prediction. The findings of the former

benchmark suggest that future work in deep learning for 3D biomolecules may benefit

from stronger dataset splitting and out-of-distribution evaluation. Further, the latter

ensembling method ranked as a top-5 method in the ligand prediction category of the

16th Critical Assessment of Techniques for Structure Prediction (CASP16).

Taken together, this dissertation represents an advancement in our understanding

of life’s molecules through the lens of deep learning as well as new insights and

directions for future deep learning research in the physical and life sciences. All

methods, benchmarks, and datasets described in this dissertation have been open

sourced and made freely available to the scientific community.
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Chapter 1

INTRODUCTION

1.1 THE BIOMOLECULAR BASIS OF LIFE

Life is driven by collections of interacting atoms known as molecules, and the three-

dimensional (3D) shape of these molecules defines their biochemical function within

and beyond a single cell [1], enabling complex cellular ecosystems to develop and

self-regulate [2]. The central dogma of molecular biology, visualized in Figure 1.1,

succinctly characterizes the origins of these molecules [3], namely that precursor

molecules known as deoxyribonucleic acids (DNA), once transcribed into messen-

ger ribonucleic acids (RNA), store the necessary genetic information to be translated

into new polymer chains of amino acids, known as proteins, within a cell’s ribosome.

These protein biomolecules, known as the ”workhorses of the cell”, perform many of

the most common tasks in cellular biology [4].

Figure 1.1: An illustration of information flow in molecular biology’s central dogma.
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As the 3D structure of a protein largely describes its function in living organisms

[5], determining the structure of a protein according to its amino acid sequence is

crucial to understanding its multi-faceted cellular roles. Over the last 50 years, the

most common way scientists have set out to deduce such structures was through

laborious and expensive experimental techniques such as X-ray crystallography [6],

nuclear magnetic resonance spectroscopy [7], and cryo-electron microscopy [8], making

it difficult to ascertain the structure of proteins beyond a small fraction of those

present in nature. However, recent progress in computational prediction of 3D protein

structures from their primary amino acid sequences, which are readily available in

vast quantities, now allows researchers to quickly estimate protein structures at a

genomic scale, ushering in a new era of computational and structural biotechnology.

Such progress was largely driven by advances in artificial intelligence (AI), machine

learning (ML), and particularly deep learning (DL) methodologies, suggesting that

AI-driven methods in the physical sciences may provide similar levels of scientific

impact in related disciplines in the coming years. To contextualize the contributions

of this dissertation, in the next two sections, I will outline key paradigms in machine

learning and how they relate to recent progress in our ability to model, understand,

and design biomolecular systems at scale.

1.2 MACHINE LEARNING PARADIGMS

The field of machine learning is found within a hierarchy originating with general-

purpose AI algorithms and giving rise to deep learning methods based on artificial

neural networks. The relationship between these computational (sub)disciplines is

depicted in Figure 1.2. As this figure shows, machine learning also enables two dis-

tinct learning paradigms, discriminative modeling and generative modeling, with the

former focused on identifying optimal partitioning of a dataset for predictive or clas-

sification purposes and the latter aiming to reproduce an arbitrary data-generating

2



Figure 1.2: A taxonomy of artificial intelligence and machine learning methods.

process for exploratory or creative endeavors. Machine learning (and thereby deep

learning) can further be divided into supervised and unsupervised learning. In broad

strokes, supervised learning uses labeled data to teach a machine learning model to

predict the labels of new data points, whereas unsupervised learning uses (poten-

tially) unlabeled data to train a machine learning model to cluster or distributionally

characterize a dataset to group or sample new data points [9]. Generally speaking,

discriminative models are supervised learning algorithms, while generative models are

often trained in an unsupervised manner.

Whereas machine learning algorithms often refer to classical learning techniques

such as linear regression and decision trees, deep learning represents a dedicated class

of learning algorithms based on deep neural networks trained using backpropagation

and gradient descent [10]. As deep learning methods have increasingly become in-

strumental in modern scientific research, they will be the primary type of machine

learning algorithm discussed in the remainder of this dissertation. The most com-

mon type of deep learning algorithm today is a neural network model architecture

referred to as a Transformer [11]. The key components of a Transformer are based on

3



the idea of attention, in particular self-attention, which allows the model to implic-

itly learn an importance score between any pair of units in the model’s input. For

example, in the context of training on natural language data using self-supervised

learning (a popular form of unsupervised learning based on randomly masking input

units), Transformers can learn the underlying relationships between words in a sen-

tence, relationships which give rise to complex grammatical patterns and higher-order

narrative structures. Similarly, sparse variants of Transformers operating on graphs,

known as graph neural networks, can learn real-valued functions of graph-structured

data for node, edge, or graph-level discriminative and generative tasks [12].

1.3 MACHINE LEARNING FOR BIOMOLECULES

Although deep learning was initially debuted primarily in the realm of computer vision

[13], applications of deep learning in the physical sciences have emerged as a fruitful

independent research paradigm over the last several years [14]. AlphaFold 2 [15], one

of the first foundational deep learning methods in the physical sciences, namely for

protein structure prediction, garnered significant interest from the broader scientific

community for its clear demonstration that, when designed for the right types of

problems, deep learning algorithms can considerably accelerate scientific discovery

through their powerful predictive modeling capabilities in complex data domains.

This method sparked a slew of new research [16, 17, 18, 19, 20, 21, 22, 23, 24,

25] in geometric deep learning, a branch of deep learning studying the symmetries

present in diverse (e.g., scientific) data sources and, for sake of learning efficiency

and expressiveness, how to model them directly by designing appropriate inductive

biases within a given neural network architecture [26]. Notably, AlphaFold’s focus

on protein-specific structure prediction was soon expanded to encompass all of life’s

(bio)molecules with AlphaFold 3 [27], with several precursor works [28, 29, 30, 31,

32] building in this research direction.
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1.4 DISSERTATION OUTLINE

This dissertation presents a series of deep learning methods developed to advance our

understanding of biomolecular structures and their interactions for drug discovery and

design. The next four chapters describe methods for protein representation learning

and interaction prediction; biomolecular representation learning; small molecule gen-

eration and optimization and structure-based drug design; and protein-ligand docking

and affinity prediction, respectively. In contrast, the final two chapters detail a deep

learning benchmark and an ensembling method ranked as a top-5 ligand prediction

method in the CASP16 competition.

In Chapter 2, I describe the new Geometric Transformer graph neural net-

work architecture for protein representation learning and analyze its performance

for an important task in protein structural modeling: prediction of atomic protein-

protein interactions. In Chapter 3, I present the Geometry-Complete Perceptron

Network (GCPNet) for representation learning of 3D biomolecules and characterize

its predictive performance for a range of scientific tasks in biology, chemistry, and

physics. In Chapter 4, I detail the Geometry-Complete Diffusion Model (GCDM)

for small molecule generation and optimization which adapts GCPNet for expressive

diffusion generative modeling of 3D molecules as well as structure-based drug design.

In Chapter 5, I present a new conditional flow matching method named FlowDock

for protein-ligand docking and affinity prediction and contextualize its structure pre-

diction performance using standardized benchmarking data and its affinity prediction

results in the CASP16 ligand prediction competition.

In Chapter 6, I then discuss the new deep learning benchmark PoseBench for

broadly applicable protein-ligand docking and structure prediction, the results of

which highlight the importance in future work of rigorously evaluating the gener-

alization capabilities of new generative structure prediction models and assessing

5



their ability to balance biomolecular structure prediction and protein-ligand interac-

tion modeling accuracy. In Chapter 7, I describe how I adapted the PoseBench

benchmark into a deep learning-based ensembling prediction method called MUL-

TICOM ligand and entered this method as a standalone ligand predictor in the

CASP16 competition, ultimately ranking among the top-5 predictors for this cate-

gory.

Lastly, in Chapter 8, I reflect on the contributions of this dissertation and outline

potential future directions for the field of biomolecular modeling and design with deep

learning.
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Chapter 2

GEOMETRIC TRANSFORMERS FOR PROTEIN INTER-

FACE CONTACT PREDICTION

Adapted from Alex Morehead, Chen Chen, and Jianlin Cheng. ”Geometric

Transformers for Protein Interface Contact Prediction”. The Tenth International

Conference on Learning Representations (ICLR 2022).

2.1 ABSTRACT

Computational methods for predicting the interface contacts between proteins come

highly sought after for drug discovery as they can significantly advance the accuracy

of alternative approaches, such as protein-protein docking, protein function analysis

tools, and other computational methods for protein bioinformatics. In this chap-

ter, we present the Geometric Transformer, a novel geometry-evolving graph

transformer for rotation and translation-invariant protein interface contact prediction,

packaged within DeepInteract, an end-to-end prediction pipeline. DeepInter-

act predicts partner-specific protein interface contacts (i.e., inter-protein residue-

residue contacts) given the 3D tertiary structures of two proteins as input. In rigor-

ous benchmarks, DeepInteract, on challenging protein complex targets from the

13th and 14th CASP-CAPRI experiments as well as Docking Benchmark 5, achieves

14% and 1.1% top L/5 precision (L: length of a protein unit in a complex), respec-

tively. In doing so, DeepInteract, with the Geometric Transformer as its
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graph-based backbone, outperforms existing methods for interface contact prediction

in addition to other graph-based neural network backbones compatible with Deep-

Interact, thereby validating the effectiveness of the Geometric Transformer

for learning rich relational-geometric features for downstream tasks on 3D protein

structures. Training and inference code as well as pre-trained models are available at

https://github.com/BioinfoMachineLearning/DeepInteract.

2.2 INTRODUCTION

Interactions of proteins, as illustrated in Figure 2.1, often reflect and directly influence

their functions in molecular processes, so understanding the relationship between pro-

tein interaction and protein function is of utmost importance to biologists and other

life scientists. Here, we study the residue-residue interaction between two protein

structures that bind together to form a binary protein complex (i.e., dimer), to bet-

ter understand how these coupled proteins will function in vivo. Predicting where

two proteins will interface in silico has become an appealing method for measuring

the interactions between proteins since a computational approach saves time, energy,

and resources compared to traditional methods for experimentally measuring such in-

terfaces [33]. A key motivation for determining these interface contacts is to decrease

the time required to discover new drugs and to advance the study of newly designed

proteins [34].

Existing approaches to interface contact prediction include classical machine learn-

ing and deep learning-based methods. These methods traditionally use hand-crafted

features to predict which inter-chain pairs of amino acid residues will interact with

one another upon the binding of the two protein chains, treating each of their residue

pairs as being independent of one another. Recent work on interface prediction [35],

however, considers the biological insight that the interaction between two inter-chain

residue pairs depends not only on the pairs’ features themselves but also on other

8
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residue pairs ordinally nearby in terms of the protein complex’s sequence. As such,

the problem of interface contact prediction became framed as one akin to image seg-

mentation or object detection, opening the door to innovations in interface contact

prediction by incorporating the latest techniques from computer vision.

Nonetheless, up to now, no works on partner-specific protein interface contact pre-

diction have leveraged two recent innovations to better capture geometric shapes of

protein structures and long-range interactions between amino acids important for ac-

curate prediction of protein-protein interface contacts: (1) geometric deep learning for

evolving proteins’ geometric representations and (2) graph-based self-attention sim-

ilar to that of [11]. Towards this end, we introduce DeepInteract, an end-to-end

deep learning pipeline for protein interface prediction. DeepInteract houses the

Geometric Transformer, a new graph transformer designed to exploit protein

structure-specific geometric properties, as well as a dilated convolution-based inter-

action module adapted from [36] to predict which inter-chain residue pairs comprise

the interface between the two protein chains. In response to the exponential rate of

progress being made in predicting protein structures in silico, we trained DeepIn-

teract end-to-end using DIPS-Plus [37], to date the largest feature-rich dataset of

protein complex structures for machine learning of protein interfaces, to close the gap

on a proper solution to this fundamental problem in structural biology.

2.2.1 Related work

Over the past several years, geometric deep learning has become an effective means

of automatically learning useful feature representations from structured data [26].

Previously, geometric learning algorithms like convolutional neural networks (CNNs)

and graph neural networks (GNNs) have been used to model molecules and to predict

protein interface contacts. [39] introduced a deep tensor neural network designed for

molecular tasks in quantum chemistry. [40] designed a siamese GNN architecture to
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Figure 2.1: A Mol* ([38]) visualization of interacting protein chains (PDB ID: 3H11).

learn weight-tied feature representations of residue pairs. This approach, in essence,

processes subgraphs for each residue in each complex and aggregates node-level fea-

tures locally using a nearest-neighbors approach. Since this partner-specific method

derives its training dataset from Docking Benchmark 5 (DB5) ([41]), it is ultimately

data-limited. [42] represent interacting protein complexes by voxelizing each residue

into a 3D grid and encoding in each grid entry the presence and type of the residue’s

underlying atoms. This partner-specific encoding scheme captures static geometric

features of interacting complexes, but it is not able to scale well due to its requiring

a computationally-expensive spatial resolution of the residue voxels to achieve good

results.

Continuing the trend of applying geometric learning to protein structures, [43] de-

veloped MaSIF to perform partner-independent interface region prediction. Likewise,

[44] do so with an attention-based GNN. These methods learn to perform binary clas-

sification of the residues in both complex structures to identify regions where residues

from both complexes are likely to interact with one another. However, because these

approaches predict partner-independent interface regions, they are less likely to be

useful in helping solve related tasks such as drug-protein interaction prediction and
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protein-protein docking [45]. [46] created a graph neural network for predicting the

effects of mutations on protein-protein binding affinities, and, more recently, [47]

introduced a Euclidean equivariant transformer for protein docking. Both of these

methods may benefit from the availability of precise interface predictors by using

them to generate contact maps as input features.

To date, one of the best result sets obtained by any model for protein interface

contact prediction comes from [35] where high-order (i.e. sequential and coevolution-

based) interactions between residues are learned and preserved throughout the net-

work in addition to static geometric features initially embedded in the protein com-

plexes. However, this work, like many of those preceding it, undesirably maintains

the trend of reporting model performance in terms of the median area under the

receiver operating characteristic which is not robust to extreme class imbalances as

often occur in interface contact prediction. In addition, this approach is data-limited

as it uses the DB5 dataset and its predecessors to derive both its training data and

makes use of only each residue’s carbon-alpha (Cα) atom in deriving its geometric

features, ignoring important geometric details provided by an all-atom view of protein

structures.

Our work builds on top of prior works by making the following contributions:

• We provide the first example of graph self-attention applied to protein interface

contact prediction, showcasing its effective use in learning representations of

protein geometries to be exploited in downstream tasks.

• We propose the new Geometric Transformer which can be used for tasks

on 3D protein structures and similar biomolecules. For the problem of interface

contact prediction, we train the Geometric Transformer to evolve a geo-

metric representation of protein structures simultaneously with protein sequence

and coevolutionary features for the prediction of inter-chain residue-residue con-

tacts. In doing so, we also demonstrate the merit of the Enhanced Database of
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Interacting Protein Structures (DIPS-Plus) for interface prediction [37].

• Our experiments on challenging protein complex targets demonstrate that our

proposed method, DeepInteract, achieves state-of-the-art results for inter-

face contact prediction.

2.3 METHODS

2.3.1 Datasets

The current opinion in the bioinformatics community is that protein sequence fea-

tures still carry important higher-order information concerning residue-residue inter-

actions [35]. In particular, the residue-residue coevolution and residue conservation

information obtained through multiple sequence alignments (MSAs) has been shown

to contain powerful information concerning intra-chain and even inter-chain residue-

residue interactions as they yield a compact representation of residues’ coevolutionary

relationships [15].

Keeping this in mind, for our training and validation datasets, we chose to use

DIPS-Plus [37], one of the largest feature-rich datasets of protein complexes for pro-

tein interface contact prediction. In total, DIPS-Plus contains 42,112 binary protein

complexes with positive labels (i.e., 1) for each inter-chain residue pair that are found

within 6 Å of each other in the complex’s bound (i.e., structurally-conformed) state.

The dataset contains a variety of rich residue-level features: (1) an 8-state one-hot

encoding of the secondary structure in which the residue is found; (2) a scalar solvent

accessibility; (3) a scalar residue depth; (4) a 1 × 6 vector detailing each residue’s

protrusion concerning its side chain; (5) a 1 × 42 vector describing the composition of

amino acids towards and away from each residue’s side chain; (6) each residue’s coor-

dinate number conveying how many residues to which the residue meets a significance

threshold, (7) a 1 × 27 vector giving residues’ emission and transition probabilities
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derived from HH-suite3 [48] profile hidden Markov models constructed using MSAs;

and (8) amide plane normal vectors for downstream calculation of the angle between

each intra-chain residue pair’s amide planes.

To compare the performance of DeepInteract with that of state-of-the-art

methods, we select 32 homodimers and heterodimers from the test partition of DIPS-

Plus to assess each method’s competency in predicting interface contacts. We also

evaluate each method on 14 homodimers and 5 heterodimers with PDB structures

publicly available from the 13th and 14th sessions of CASP-CAPRI [49, 50] as these

targets are considered by the bioinformatics community to be challenging for existing

interface predictors. For any CASP-CAPRI test complexes derived from multimers

(i.e., protein complexes that can contain more than two chains), to represent the

complex we chose the pair of chains with the largest number of interface contacts.

Finally, we use the traditional 55 test complexes from the DB5 dataset [40, 42, 35] to

benchmark each heteromer-compatible method.

To expedite training and validation and to constrain memory usage, beginning

with all remaining complexes not chosen for testing, we filtered out all complexes

where either chain contains fewer than 20 residues and where the number of possible

interface contacts is more than 2562, leaving us with an intermediate total of 26,504

complexes for training and validation. In the initial version of DIPS-Plus which we

adopted in this work, binary protein complexes are grouped into shared directories

according to whether they are derived from the same parent complex. As such, using

a per-directory strategy, we randomly designate 80% of these complexes for training

and 20% for validation to restrict overlap between our cross-validation datasets. After

choosing these targets for testing, we then filter out complexes from our training and

validation partitions of DIPS-Plus that contain any chain with over 30% sequence

identity to any chain in any complex in our test datasets. This threshold of 30%

sequence identity is commonly used in the bioinformatics literature [51, 52] to prevent
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Figure 2.2: A framework overview of DeepInteract. The proposed pipeline sepa-
rates interface contact prediction into two tasks: (1) learning new node representa-
tions hA and hB for pairs of residue protein graphs and (2) convolving over hA and
hB interleaved together to predict pairwise contact probabilities.

large evolutionary overlap between a dataset’s cross-validation partitions. However,

most existing works for interface contact prediction do not employ such filtering

criteria, so the results reported in these works may be over-optimistic by nature. In

performing such sequence-based filtering, we are left with 15,618 and 3,548 binary

complexes for training and validation, respectively.

2.3.2 Problem formulation

Summarized in Figure 2.2, we designed DeepInteract, our proposed pipeline for

interface contact prediction, to frame the problem of predicting interface contacts

in silico as a two-part task: The first part is to use attentive graph representation

learning to inductively learn new node-level representations hA ∈ RA×C and hB ∈

RB×C for a pair of graphs representing two protein chains. The second part is to

channel-wise interleave hA and hB into an interaction tensor I ∈ RA×B×2C, where

A ∈ R and B ∈ R are the numbers of amino acid residues in the first and second

input protein chains, respectively, and C ∈ R is the number of hidden channels in

both hA and hB. We use interaction tensors such as I as input to our interaction

module, a convolution-based dense predictor of inter-graph node-node interactions.
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Figure 2.3: An overview of the Geometric Transformer. Notably, the final
layer of the Geometric Transformer removes the edge update path since, in this
formulation of interface prediction, only graph pairs’ node representations hA and hB
are directly used for the final interface contact prediction.

We denote each protein chain in an input complex as a graph G with edges E between

the k-nearest neighbors of its nodes N, with nodes corresponding to the chain’s amino

acid residues represented by their Cα atoms. In this setting, we let k = 20 as we

observed favorable cross entropy loss on our validation dataset with this level of

connectivity. We note that this level of graph connectivity has also proven to be

advantageous for prior works developing deep learning approaches for graph-based

protein representations [40, 53].

2.3.3 Geometric Transformer architecture

Hypothesizing that a self-attention mechanism that evolves proteins’ physical ge-

ometries is a key component missing from existing interface contact predictors, we

propose the Geometric Transformer, a graph neural network explicitly designed

for capturing and iteratively evolving protein geometric features. As shown in Figure

2.3, the Geometric Transformer builds upon the existing Graph Transformer
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architecture [54] by introducing (1) an edge initialization module, (2) an edge-wise

positional encoding (EPE), and (3) a geometry-evolving conformation module em-

ploying repeated geometric feature gating (GFG) (see Appendices A.6, A.7, and A.8

for rationale). Moreover, the Geometric Transformer includes subtle architec-

tural enhancements to the original Transformer architecture [11] such as moving the

network’s first normalization layer to precede any affinity score computations for im-

proved training stability [55]. To our knowledge, the Geometric Transformer is

the first deep learning model that applies multi-head attention to the task of partner-

specific protein interface prediction. The following sections serve to distinguish our

new Geometric Transformer from other Transformer-like architectures by de-

scribing its new neural network modules for geometric self-attention.

2.3.4 Edge initialization module

To enrich its expressivity, the Geometric Transformer first embeds each edge

e ∈ E with the initial edge representation

cij = ϕ1
e([p1 || p2 || ϕmij

e (mij || λe) || ϕf1
e (f1) || ϕf2

e (f2) || ϕf3
e (f3) || ϕf4

e (f4)]) (2.1)

eij = ϕ2
e(ρ

a
e(ρ

g
e(cij))) (2.2)

where ϕi
e refers to the i’th edge information update function such as a multi-

layer perceptron; || denotes channel-wise concatenation; p1 and p2, respectively, are

trainable one-hot vectors indexed by Pi and Pj, the positions of nodes i and nodes j

in the chain’s underlying amino acid sequence; mij are any user-predefined features

for e (in our case the normalized Euclidean distances between nodes i and nodes j);

λe are edge-wise sinusoidal positional encodings sin(Pi−Pj) for e; f1, f2, f3, and f4, in

order, are the four protein-specific geometric features defined in Appendix A.3; and
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Figure 2.4: An overview of the Conformation Module. The Geometric Trans-
former uses a Conformation Module in each layer to evolve protein graphs’ geomet-
ric representations via repeated gating and a final series of residual connection blocks.

ρae and ρge are feature addition and channel-wise gating functions, respectively.

Conformation Module

The role of the Geometric Transformer’s subsequent conformation module, as

illustrated in Figure 2.4, is for it to learn how to iteratively evolve geometric repre-

sentations of protein graphs by applying repeated gating to our initial edge geometric

features f1, f2, f3, and f4. To do so, the conformation module updates eij by intro-

ducing the notion of a geometric neighborhood of edge e, treating e as a pseudo-node.

Precisely, Ek, the edge geometric neighborhood of e, is defined as the 2n edges

Ek = {en1i, en2j | (n1, n2 ∈ Nk) and (n1, n2 ̸= i, j)}, (2.3)

where Nk ⊂ N are the source nodes for incoming edges on edge e′s source and des-

tination nodes. The intuition behind updating each edge according to its 2n nearest

neighboring edges is that the geometric relationship between a residue pair, described

by their mutual edge’s features, can be influenced by the physical constraints imposed

by proximal residue-residue geometries. As such, we use these nearby edges during

geometric feature updates. In the conformation module, the iterative processing of

all geometric neighborhood features for edge e can be represented as
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Oij =
∑
k∈Ek

[(ϕn
e (enij,k)⊙ ϕfn

e (fn)),∀n ∈ F] (2.4)

eij = 2×ResBlock2(ϕ5
e(eij) + 2×ResBlock1(ϕ5

e(eij) +Oij)), (2.5)

where F are the indices of the geometric features {f1, f2, f3, f4} defined in Appendix

A.3;⊙ is element-wise multiplication; enij,k is neighboring edge ek’s representation after

gating with fn−1; and 2×ResBlocki represents the i’th application of two unique, suc-

cessive residual blocks, each defined as ResBlock(x) = ϕRes2
e (ϕRes1

e (x))+x. Described

in Section A.3, by way of their construction, each of our selected edge geometric fea-

tures is translation and rotation invariant to the network’s input space. As discussed

in Appendix A.5, we couple these features with our choice of node-wise positional en-

codings (see Section 2.3.5) to attain canonical invariant local frames for each residue

to encode the relative poses of features in our protein graphs. In doing so, we leverage

many of the benefits of employing equivariant representations while reducing the large

memory requirements they typically induce, to yield a robust invariant representation

of each input protein.

2.3.5 Selected Transformer initializations and operations

For the initial node features used within the Geometric Transformer, we include

each of DIPS-Plus’ residue-level features described succinctly in Section 2.3.1. Ad-

ditionally, we append initial min-max normalizations of each residue’s index in Pi to

each node as node-wise positional encodings. For the remainder of the Geometric

Transformer’s operations, the network’s order of operations closely follows the

definitions given by [54] for the Graph Transformer, with an exception being that the

first normalization layer now precedes any affinity score calculations.
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2.3.6 Interaction module

Upon applying multiple layers of the Geometric Transformer to each pair of in-

put protein chains, we then channel-wise interleave the Geometric Transformer’s

learned node representations hA and hB into I to serve as input to our interaction

module, consisting of a dilated ResNet module adapted from [36]. The core residual

network component in this interaction module consists of four residual blocks dif-

fering in the number of internal layers. Each residual block is comprised of several

consecutive instance normalization layers and convolutional layers with 64 kernels of

size 3 × 3. The number of layers in each block represents the number of 2D convolu-

tion layers in the corresponding component. The final values of the last convolutional

layer are added to the output of a shortcut block, which is a convolutional layer with

64 kernels of size 1 × 1. A squeeze-and-excitation (SE) block [56] is added at the

end of each residual block to adaptively recalibrate its channel-wise feature responses.

Ultimately, the output of the interaction module is a probability-valued A x B matrix

that can be viewed as an inter-chain residue binding heatmap.

2.4 RESULTS

2.4.1 Experiments

Setup

For all experiments conducted with DeepInteract, we used 2 layers of the graph

neural network chosen for the experiment and 128 intermediate GNN and CNN chan-

nels to restrict the time required to train each model. For the Geometric Trans-

former, we used an edge geometric neighborhood of size n = 2 for each edge such

that each edge’s geometric features are updated by their 4-nearest incoming edges. In

addition, we used the Adam optimizer [57], a learning rate of 1e−3, a weight decay rate
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of 1e−2, a dropout (i.e., forget) rate of 0.2, and a batch size of 1. We also employed

0.5-threshold gradient value clipping and stochastic weight averaging [58]. With an

early-stopping patience period of 5 epochs, we observed most models converging af-

ter approximately 30 training epochs on DIPS-Plus. For our loss function, we used

weighted cross entropy with a positive class weight of 5 to help the network overcome

the large class imbalance present in interface prediction. All DeepInteract mod-

els employed 14 layers of our dilated ResNet architecture described in Section 2.3.6

and had their top-k metrics averaged over three separate runs, each with a differ-

ent random seed (standard deviation of top-k metrics in parentheses). Prior to our

experiments on the DB5 dataset’s 55 test complexes, we fine-tuned each DeepInter-

act model using the held-out 140 and 35 complexes remaining in DB5 for training

and validation, respectively. Employing a similar training configuration as described

above, in this context we used a lower learning rate of 1e−5 to facilitate smoother

transfer learning between DIPS-Plus and DB5.

Hyperparameter search

To identify our optimal set of model hyperparameters, we performed a manual hy-

perparameter search over a learning rate range of [1e−1, 1e−2, 1e−3, 1e−4, 1e−5, 1e−6]

and a weight decay rate range of [1e−1, 1e−2, 1e−3, 1e−4], respectively. In doing so, we

found a learning rate of 1e−3 and a weight decay rate of 1e−2 to provide the lowest

loss and the highest metric values on our DIPS-Plus validation dataset. We restricted

our hyperparameter search to the learning rate and weight decay rate of our models

due to the large computational and environmental costs associated with training each

model. However, this suggests further improvements to our models could be found

with a more extensive hyperparameter search over, for example, the models’ dropout

rate.
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Table 2.1: The average top-k precision on two types of DIPS-Plus test targets.

16 (Homo) 16 (Hetero)

Method 10 L/10 L/5 10 L/10 L/5

BI 0 0 0 0.02 0.02 0.02

DH 0.13 0.12 0.09

CC 0.17 0.16 0.15

DI (GCN) 0.22 (0.06) 0.20 (0.07) 0.18 (0.04) 0.08 (0.01) 0.08 (0.01) 0.07 (0.02)

DI (GT) 0.27 (0.06) 0.24 (0.04) 0.21 (0.04) 0.10 (0.04) 0.09 (0.04) 0.08 (0.04)

DI (GeoT w/o EPE) 0.28 (0.05) 0.24 (0.01) 0.23 (0.03) 0.11 (0.05) 0.10 (0.04) 0.09 (0.03)

DI (GeoT w/o GFG) 0.27 (0.08) 0.24 (0.08) 0.21 (0.08) 0.10 (0.02) 0.09 (0.02) 0.09 (0.01)

DI (GeoT) 0.25 (0.03) 0.25 (0.03) 0.23 (0.02) 0.15 (0.04) 0.14 (0.05) 0.11 (0.04)

Table 2.2: The average top-k precision and recall on DIPS-Plus test targets of both
types.

32 (Both Types)

Method P@10 P@L/10 P@L/5 R@L R@L/2 R@L/5

BI 0.01 0.01 0.01 0.01 0.004 0.003

DI (GCN) 0.15 (0.03) 0.16 (0.01) 0.12 (0.02) 0.10 (0.02) 0.06 (0.01) 0.03 (0.003)

DI (GT) 0.18 (0.05) 0.16 (0.04) 0.15 (0.04) 0.13 (0.02) 0.07 (0.01) 0.04 (0.01)

DI (GeoT w/o EPE) 0.19 (0.04) 0.18 (0.03) 0.16 (0.03) 0.14 (0.02) 0.08 (0.02) 0.04 (0.02)

DI (GeoT w/o GFG) 0.18 (0.05) 0.16 (0.04) 0.15 (0.04) 0.14 (0.02) 0.08 (0.02) 0.04 (0.01)

DI (GeoT) 0.20 (0.01) 0.19 (0.01) 0.17 (0.02) 0.15 (0.003) 0.09 (0.004) 0.04 (0.002)

Selection of baselines

We considered the reproducibility and accessibility of a method to be the most impor-

tant factors for its inclusion in our following benchmarks to encourage the adoption of

accessible and transparent benchmarks for future works. As such, we have included

the methods BIPSPI (an XGBoost-based algorithm) [59], DeepHomo (a CNN for ho-

modimers) [60], and ComplexContact (a CNN for heterodimers) [61] since they are

either easy to reproduce or simple for the general public to use to make predictions.

Each method predicts interfacing residue pairs subject to the (on average) 1:1000

positive-negative class imbalance imposed by the biological sparsity of true interface

contacts. We note that we also considered adding more recent baseline methods such

as those of [42] and [35]. However, for both of these methods, we were not able to

locate any provided source code or web server predictors facilitating the prediction
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Table 2.3: The average top-k precision on dimers from CASP-CAPRI 13 & 14.

14 (Homo) 5 (Hetero)

Method 10 L/10 L/5 10 L/10 L/5

BI 0 0 0 0.04 0 0.03

DH 0.02 0.02 0.02

CC 0.06 0.08 0.05

DI (GCN) 0.12 (0.04) 0.11 (0.03) 0.13 (0.02) 0.10 (0.07) 0.11 (0.08) 0.09 (0.04)

DI (GT) 0.08 (0.03) 0.09 (0.05) 0.08 (0.03) 0.14 (0.02) 0.14 (0.02) 0.12 (0.03)

DI (GeoT w/o EPE) 0.11 (0.01) 0.12 (0.02) 0.11 (0.01) 0.18 (0.07) 0.20 (0.09) 0.18 (0.04)

DI (GeoT w/o GFG) 0.10 (0.02) 0.10 (0.02) 0.09 (0.02) 0.14 (0.03) 0.17 (0.03) 0.14 (0.02)

DI (GeoT) 0.18 (0.05) 0.13 (0.03) 0.11 (0.02) 0.30 (0.09) 0.31 (0.07) 0.24 (0.04)

Table 2.4: The average top-k precision and recall across all targets from CASP-CAPRI
13 & 14.

19 (Both Types)

Method P@10 P@L/10 P@L/5 R@L R@L/2 R@L/5

BI 0.01 0 0.01 0.02 0.01 0.001

DI (GCN) 0.12 (0.04) 0.10 (0.05) 0.09 (0.04) 0.11 (0.001) 0.06 (0.01) 0.02 (0.01)

DI (GT) 0.10 (0.03) 0.09 (0.03) 0.08 (0.02) 0.11 (0.02) 0.06 (0.01) 0.02 (0.01)

DI (GeoT w/o EPE) 0.13 (0.02) 0.14 (0.03) 0.13 (0.02) 0.12 (0.01) 0.07 (0.01) 0.03 (0.01)

DI (GeoT w/o GFG) 0.11 (0.01) 0.12 (0.02) 0.10 (0.02) 0.11 (0.01) 0.06 (0.01) 0.03 (0.01)

DI (GeoT) 0.21 (0.01) 0.19 (0.01) 0.14 (0.01) 0.13 (0.02) 0.08 (0.01) 0.04 (0.003)

of inter-protein residue-residue contacts for provided FASTA or PDB targets, so they

ultimately did not meet our baseline selection criterion of reproducibility (i.e., an abil-

ity to make new predictions). We also include two ablation studies (e.g., DI (GeoT

w/o GFG)) to showcase the effect of including network components unique to the

Geometric Transformer.

Table 2.5: The average top-k precision and recall on DB5 test targets.

55 (Hetero)

Method P@10 P@L/10 P@L/5 R@L R@L/2 R@L/5

BI 0 0.002 0.001 0.003 0.001 0.0004

CC 0.002 0.003 0.003 0.007 0.003 0.001

DI (GCN) 0.005 (0.002) 0.006 (0.001) 0.007 (0.001) 0.013 (0.002) 0.008 (0.001) 0.003 (0.001)

DI (GT) 0.008 (0.004) 0.008 (0.005) 0.008 (0.004) 0.010 (0.005) 0.006 (0.003) 0.003 (0.002)

DI (GeoT w/o EPE) 0.011 (0.004) 0.009 (0.004) 0.011 (0.002) 0.018 (0.01) 0.010 (0.004) 0.0034 (0.002)

DI (GeoT w/o GFG) 0.008 (0.001) 0.008 (0.001) 0.009 (0.002) 0.014 (0.01) 0.006 (0.002) 0.003 (0.001)

DI (GeoT) 0.013 (0.001) 0.009 (0.003) 0.011 (0.001) 0.018 (0.001) 0.010 (0.001) 0.0034 (0.001)
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Our selection criterion for each baseline method consequently determined the num-

ber of complexes against which we could feasibly test each method, thereby restricting

the size of our test datasets to 106 complexes in total. In addition, not all baselines

chosen were originally trained for both types of protein complexes (i.e., homodimers

and heterodimers), so for these baselines we do not include their results for the type

of complex for which they are not respectively designed.

For brevity, in all experiments, we refer to BIPSPI, DeepHomo, ComplexContact,

and DeepInteract as BI, DH, CC, and DI, respectively. Further, we refer to

the Graph Convolutional Network of [62], the Graph Transformer of [54], and the

Geometric Transformer as GCN, GT, and GeoT, respectively. To assess the

models’ ability to correctly select residue pairs in interaction upon binding of two

given chains, all methods are scored using the top-k precision and recall metrics

(defined in Appendix A.2) commonly used for intra-chain contact prediction [36] as

well as recommender systems [63], where k ∈ {10, L/10, L/5, L/2} with L being the

length of the shortest chain in a given complex.

2.5 DISCUSSION

Table 2.1 demonstrates that DeepInteract outperforms or achieves competitive

results compared to existing state-of-the-art methods for interface contact prediction

on DIPS-Plus with both types of protein complexes, homodimers (homo) where the

two chains are of the same protein and heterodimers (hetero) where the two chains

are of different proteins. Table 2.2 shows that, when taking both types of complexes

into account, DeepInteract outperforms all other methods’ predictions on DIPS-

Plus. Since future users of DeepInteract may want to predict interface contacts

for either type of complex, we consider a method’s type-averaged top-k metrics as

important metrics for which to optimize.

Likewise, Tables 2.3 and 2.4 present the average top-k metrics of DeepInteract
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on 19 challenging protein complexes (14 homodimers and 5 heterodimers) from the

13th and 14th rounds of the joint CASP-CAPRI meeting. In them, we once again see

DeepInteract exceed the precision of state-of-the-art interface contact predictors

for both complex types. In particular, we see that combining DeepInteract with

the Geometric Transformer offers improvements to the majority of our top-k

metrics for both homodimers and heterodimers compared to using either a GCN or

a Graph Transformer-based GNN backbone, notably for heteromeric complexes with

largely asymmetric inter-chain geometries. Such a result supports our hypothesis that

the Geometric Transformer’s geometric self-attention mechanism can enable

enhanced prediction performance for downstream tasks on geometrically-intricate 3D

objects such as protein structures, using interface contact prediction as a case study.

Finally, in Table 2.5, we observe that, in predicting the interface contacts between

unbound protein chains in the DB5 test dataset, the Geometric Transformer

enables enhanced top-k precision and recall (definition in A.2) compared to all other

baseline methods, including GCNs and Graph Transformers paired with DeepInter-

act. Such a result confirms, to a moderate degree, the Geometric Transformer’s

ability to predict how the structural conformations occurring upon the binding of two

protein chains influence which inter-chain residue pairs will interact with one another

in the complex’s bound state.

2.5.1 Conclusions

In this chapter, we introduced DeepInteract which debuts the geometry-evolving

Geometric Transformer for protein representation learning and demonstrates

its effectiveness in predicting protein-protein interactions. We envision several other

uses of the Geometric Transformer in protein deep learning such as quaternary

structure quality assessment [64] and residue disorder prediction. One limitation of

the Geometric Transformer’s design is its lack of equivariant representations for
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coordinates-based prediction tasks, which we aim to address in the next chapter.
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Chapter 3

GEOMETRY-COMPLETE PERCEPTRONNETWORKS FOR

3D MOLECULAR GRAPHS

Adapted from Alex Morehead and Jianlin Cheng. ”Geometry-complete perceptron

networks for 3D molecular graphs”. Bioinformatics 40.2 (2024): btae087.

3.1 ABSTRACT

The field of geometric deep learning has recently had a profound impact on sev-

eral scientific domains such as protein structure prediction and design, leading to

methodological advancements within and outside of the realm of traditional ma-

chine learning. Within this spirit, in this chapter, we introduce GCPNet, a new

chirality-aware SE(3)-equivariant graph neural network designed for representation

learning of 3D biomolecular graphs. We show that GCPNet, unlike previous repre-

sentation learning methods for 3D biomolecules, is widely applicable to a variety of

invariant or equivariant node-level, edge-level, and graph-level tasks on biomolecular

structures while being able to (1) learn important chiral properties of 3D molecules

and (2) detect external force fields. Across four distinct molecular-geometric tasks,

we demonstrate that GCPNet’s predictions (1) for protein-ligand binding affinity

achieve a statistically significant correlation of 0.608, more than 5% greater than

current state-of-the-art methods; (2) for protein structure ranking achieve statisti-

cally significant target-local and dataset-global correlations of 0.616 and 0.871, re-
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Figure 3.1: A framework overview for our proposed Geometry-Complete Perceptron
Network (GCPNet). Our framework consists of (i.) a graph (topology) definition
process, (ii.) a GCPNet-based graph neural network for 3D molecular representation
learning, and (iii.) demonstrated application areas for GCPNet.

spectively; (3) for Newtownian many-body systems modeling achieve a task-averaged

mean squared error less than 0.01, more than 15% better than current methods; and

(4) for molecular chirality recognition achieve a state-of-the-art prediction accuracy

of 98.7%, better than any other machine learning method to date. The source code,

data, and instructions to train new models or reproduce our results are freely available

at https://github.com/BioinfoMachineLearning/GCPNet.

3.2 INTRODUCTION

Over the last several years, the field of deep learning has pioneered many new methods

designed to process graph-structured inputs. Being a ubiquitous form of information,

graph-structured data arises from numerous sources such as the fields of physics and

chemistry, for example in the form of interacting particle systems or molecular graphs.

Moreover, the relational nature of graph-structured data allows one to identify and

characterize topological associations between entities in large real-world networks

(e.g., social networks).

In scientific domains such as computational biology and chemistry, graphs are
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often used to represent the 3D structures of molecules [65], chemical compounds [66],

and even large biomolecules such as proteins [67, 68, 69, 70, 71]. Underlying many of

these successful examples of graph representations are graph neural networks (GNNs),

a class of machine learning algorithms specialized in processing irregularly-structured

input data such as graphs. Careful applications of graph neural networks in scientific

domains have considered the physical symmetries present in many scientific data

and have leveraged such symmetries to design new attention-based neural network

architectures [72, 15].

Throughout their development, geometric deep learning methods have expanded

to incorporate within them equivariance to various geometric symmetry groups to

enhance their generalization capabilities and adversarial robustness. Methods such as

group-equivariant CNNs [73], Tensor Field Networks [74], and equivariant GNNs [75]

such as GVP-GNNs [17, 76] and ClofNet [77] have paved the way for the development

of future deep learning models that respect physical symmetries present in 3D data

(e.g., rotation equivariance with respect to input data symmetries).

Within this spirit, in this work, we introduce a new geometric graph neural net-

work model, GCPNet, that is equivariant to the group of 3D rotations and transla-

tions (i.e., SE(3), the special Euclidean group, as studied in previous works [78]) and,

uniquely, that simultaneously guarantees chirality sensitivity and geometric (vector)

information completeness following graph message-passing on 3D point clouds. We

demonstrate its expressiveness and flexibility for modeling physical systems through

rigorous experiments for distinct molecular-geometric tasks. In detail, we provide the

following contributions:

• In contrast to prior geometric networks for molecules that are insensitive to

their chemical chirality [17, 76], cannot detect global physical forces acting upon

each atom [79], or do not directly learn geometric features [77], we present the

first geometric graph neural network architecture with the following desirable

28



properties for learning from 3D molecules as described in Appendix B.4.1: (1)

the ability to directly predict translation and rotation-invariant scalar prop-

erties and rotation-equivariant vector-valued quantities for nodes and edges,

respectively; (2) a rotation and translation-equivariant method for iteratively

updating node positions in 3D space; (3) sensitivity to molecular chirality; and

(4) a means by which to learn from and account for the global forces acting

upon the atoms within its inputs.

• We establish new state-of-the-art results for four distinct molecular-geometric

representation learning tasks - molecular chirality recognition, protein-ligand

binding affinity prediction, protein structure ranking, and Newtonian many-

body-systems modeling - where model predictions vary from analyzing individ-

ual nodes to summarizing entire graph inputs. GCPNet’s performance for

these tasks is statistically significant and surpasses that of previous state-of-

the-art machine learning methods for 3D molecules.

3.3 METHODS

3.3.1 Preliminaries

Overview of the problem setting

We represent a 3D molecular structure (e.g., a protein or small molecule) as a 3D

k-nearest neighbors (k-NN) graph G = (V , E) with V and E representing the graph’s

set of nodes and set of edges, respectively, and N = |V| and E = |E| representing

the number of nodes and the number of edges in the graph, respectively. In addition,

X ∈ RN×3 represents the respective Cartesian coordinates for each node. We then

design E(3)-invariant (i.e., 3D rotation, reflection, and translation-invariant) node

features H ∈ RN×h and edge features E ∈ RE×e as well as O(3)-equivariant (3D

rotation and reflection-equivariant) node features χ ∈ RN×(m×3) and edge features
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ξ ∈ RE×(x×3), respectively.

Upon constructing such features, we apply several layers of graph message-passing

using a neural network Φ (which later on we refer to as GCPNet) that updates node

and edge features using invariant and equivariant representations for the correspond-

ing feature types. Importantly, Φ guarantees, by design, SE(3) equivariance with

respect to its vector-valued input coordinates and features (i.e., xi ∈ X, χi ∈ χ, and

ξij ∈ ξ) and SE(3)-invariance regarding its scalar features (i.e., hi ∈ H and eij ∈ E).

In addition to SE(3) equivariance, Φ’s scalar graph representations achieve geometric

self-consistency and geometric completeness for the 3D structure of the input molec-

ular graph G as formalized in the definitions below, where □′ represents an updated

feature.

Definition 1. (SE(3) Equivariance).

Given (H′,E′,X′,χ′, ξ′) = Φ(H,E,X,χ, ξ), we have

(H′,E′,QX′T + g,Qχ′T ,Qξ′
T
) = Φ(H,E,QXT + g,QχT,QξT),

∀Q ∈ SO(3),∀g ∈ R3×1.

Definition 2. (Geometric Self-Consistency).

Given a pair of molecular graphs G1 and G2,

with X1 = {x1
i }i=1,...,N and X2 = {x2

i }i=1,...,N , respectively,

a geometric representation Φ(H,E) = Φ(G) is considered

geometrically self-consistent if Φ(G1) = Φ(G2)⇐⇒ ∃Q ∈ SO(3),∃g ∈ R3×1,

for i = 1, ..., n,X1T

i = QX2T

i + g [80].

Definition 3. (Geometric Completeness).

Given a positional pair of nodes (xti, x
t
j) in a 3D graph G,

with vectors atij ∈ R1×3, btij ∈ R1×3, and ctij ∈ R1×3 derived from (xti, x
t
j),

a local geometric representation F t
ij = (atij, b

t
ij, c

t
ij) ∈ R3×3 is considered

geometrically complete if F t
ij is non-degenerate, thereby forming

a local orthonormal basis located at the tangent space of xti [77].
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Figure 3.2: An overview of our proposed Geometry-Complete Perceptron (GCP)
module. The GCP module introduces node and edge-centric encodings of 3D frames
as input features that are used to directly update both scalar and vector-valued
features with geometric information-completeness guarantees as well as chirality sen-
sitivity.

3.3.2 GCPNet model architecture

To satisfy the geometric constraints described in Section 3.3.1, we introduce our ar-

chitecture for Φ satisfying Defs. (1), (2), and (3) which we refer to as the Geometry-

Complete SE(3)-Equivariant Perceptron Network (GCPNet). We illustrate the

GCPNet algorithm in Figure 3.1 and outline it in Algorithm 1. Subsequently, we

expand on our definition for GCP and GCPConv in Section 3.3.2 in the main text

and Appendix B.1, respectively, while further illustrating GCP in Figure 3.2.

We can then prove the following three propositions (see Appendix B.2.1 for a

more detailed description of the GCPNet algorithm and its corresponding property

proofs).

• Proposition 1. GCPNets are SE(3)-equivariant

−→ Def. (1).
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• Proposition 2. GCPNets are geometry self-consistent

−→ Def. (2).

• Proposition 3. GCPNets are geometry-complete

−→ Def. (3).

Geometry-complete perceptron module

As illustrated in Figure 3.2, GCPNet represents the features for nodes within an

input graph as a tuple (h, χ) to distinguish scalar features (h ∈ Rh) from vector-

valued features (χ ∈ Rm×3). Similarly, GCPNet represents an input graph’s edge

features as a tuple (e, ξ) to differentiate scalar features (e ∈ Re) from vector-valued

features (ξ ∈ Rx×3). For conciseness, we will subsequently refer to both node and

edge feature tuples as (s, V ). We then define GCPFij ,λ(·) to represent the GCP

encoding process, where λ represents a downscaling hyperparameter (e.g., 3) and

F ij ∈ R3×3 denotes the SO(3)-equivariant (i.e., 3D rotation-equivariant) frames con-

structed using the Localize operation (i.e., the EquiFrame operation of [77]) in

Algorithm 1. Specifically, the frame encodings are defined as F t
ij = (atij, b

t
ij, c

t
ij), with

atij =
xt
i−xt

j

∥xt
i−xt

j∥
, btij =

xt
i×xt

j

∥xt
i×xt

j∥
, and ctij = atij × btij, respectively. In Appendix B, we dis-

cuss how these frame encodings are direction information-complete for edges, allowing

networks incorporating them to effectively detect and leverage for downstream tasks

the force fields present within real-world many-body systems such as small molecules

and proteins.

Expressing vector representations with V . The GCP module then expresses vec-

tor representations V as follows. The features V with representation depth r are

downscaled by λ.

z = {vwdz |wdz ∈ Rr×(r/λ)} (3.1)

Additionally, V is separately downscaled in preparation to be subsequently embedded
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as direction-sensitive edge scalar features.

Vs = {vwds|wds ∈ Rr×(3×3)} (3.2)

Deriving scalar representations s′. To update scalar representations, the GCP mod-

ule, in the following manner, derives two invariant sources of information from V and

combines them with s:

qij = (Vs · Fij) ∈ R9 (3.3)

q =


1

|N (i)|
∑

j∈N (i) qij if Vs represents nodes

qij if Vs represents edges

(3.4)

s(s,q,z) = s ∪ q ∪ ∥z∥2 (3.5)

where · denotes the inner product, N (·) represents the neighbors of a node, and

∥·∥2 denotes the L2 norm. Then, denote t as the representation depth of s, and let

s(s,q,z) ∈ Rt+9+(r/λ) with representation depth (t + 9 + (r/λ)) be projected to s′ with

representation depth t′:

sv = {s(s,q,z)ws + bs|ws ∈ R(t+9+(r/λ))×t′} (3.6)

s′ = σs(sv) (3.7)

Note that embedding geometric frames Fij as qij in Equation 3.3 ultimately en-

ables GCPNet to iteratively learn chirality-sensitive and global force-aware repre-

sentations of each 3D network input. Moreover, Equation 3.4 allows GCPNet to

encode local geometric substructures for each node, where the theoretical importance

of such network behavior is discussed in detail by [77].

Deriving vector representations V ′. The GCP module then concludes by updating
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vector representations as follows:

Vu = {zwuz |wuz ∈ R(r/λ)×r′} (3.8)

V ′ = {Vu ⊙ σg(σ+(sv)wg + bg)|wg ∈ Rt′×r′} (3.9)

where ⊙ represents element-wise multiplication and the gating function σg is applied

row-wise to preserve SO(3) equivariance within V ′.

Conceptually, the GCP module is autoregressively applied to tuples (s, V ) a total

of ω times to derive rich scalar and vector-valued features. The module does so

by blending both feature types iteratively with the 3D direction and information

completeness guarantees provided by geometric frame encodings F ij. We note that

this model design runs in contrast with prior graph neural networks for physical

systems such as GVP-GNNs [17, 76] and ClofNet [77], which are either insensitive to

chemical chirality and global atomic forces or do not directly learn geometric features

for downstream prediction tasks, making the proposed GCP module well suited for

learning directly from 3D molecular graphs.

3.3.3 Learning from 3D graphs with GCPNet

In this section, we propose a flexible manner in which to perform 3D graph convo-

lution with our proposed GCP module, as illustrated in Figure 3.1 and employed

in Algorithm 1. For interested readers, in Appendix B, we provide an expanded

derivation and description of how to perform 3D graph convolution with GCPNet.

The GCPNet algorithm

In this section, we describe our overall 3D graph convolution learning algorithm driven

by GCPNet (Algorithm 1). We also discuss the rationale behind our design decisions

for GCPNet and provide examples of use cases in which one might apply GCPNet

34



Algorithm 1 GCPNet

Require: (hi ∈ H, χi ∈ χ), (eij ∈ E, ξij ∈ ξ), xi ∈ X, graph G
1: Initialize X0 = XC ← Centralize(X)
2: F ij = Localize(xi ∈ X0, xj ∈ X0)
3: Project (h0i , χ

0
i ), (e0ij, ξ

0
ij)← GCPe((hi, χi), (eij, ξij), Fij)

4: for l = 1 to L do
5: (hli, χ

l
i), x

l
i = GCPConvl((hl−1

i , χl−1
i ), (e0ij, ξ

0
ij), x

l−1
i , Fij)

6: if Updating Node Positions then
7: FL

ij = Localize(xi ∈ Xl, xj ∈ Xl)
8: Finalize (XL)← Decentralize(Xl)
9: else
10: xLi = x0i
11: Project (hLi , χL

i ), (eLij, ξ
L
ij)← GCPp((h

l
i, χ

l
i), (e0ij, ξ

0
ij), FL

ij)
Ensure: (hLi , χL

i ), (eLij, ξ
L
ij), x

L
i

for specific learning tasks.

On Line 2 of Algorithm 1, the Centralize operation removes the center of mass

from each node position in the input graph to ensure that such positions are subse-

quently 3D translation-invariant.

Thereafter, following [77], the Localize operation on Line 3 crafts translation-

invariant and SO(3)-equivariant frame encodings F t
ij = (atij, b

t
ij, c

t
ij). As described in

more detail in Appendix B, these frame encodings are chirality-sensitive and direction

information-complete for edges, imbuing networks that incorporate them with the

ability to more easily detect force field interactions present in many real-world atomic

systems, as we demonstrate through corresponding experiments in Section 3.4.

Before applying any geometry-complete graph convolution layers, on Line 4 we use

GCPe to embed our input node and edge features into scalar and vector-valued values,

respectively, while incorporating geometric frame information. Subsequently, in Lines

5-6, each layer of geometry-complete graph convolution is performed autoregressively

via GCPConvl starting from these initial node and edge feature embeddings, all

while maintaining information flow originating from the geometric frames F ij.

On Lines 8 through 12, we finalize our procedure with which to update in an SE(3)-
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equivariant manner the position of each node in an input 3D graph. In particular, we

update node positions by residually adding learned vector-valued node features (χl
vi

)

to the node positions produced by the previous GCPConv layer (l−1). As shown in

Appendix B, such updates are initially SO(3)-equivariant, and on Line 10 we ensure

these updates also become 3D translation-equivariant by adding back to each node

position the input graph’s original center of mass via the Decentralize operation.

In total, this procedure produces SE(3)-equivariant updates to node positions. Ad-

ditionally, for models that update node positions, we note that Line 9 updates frame

encodings F ij using the model’s final predictions for node positions to provide more

information-rich feature projections on Line 14 via GCPp to conclude the forward

pass of GCPNet.

Network utilities.

In summary, GCPNet receives an input 3D graph G with node positions x, scalar

node and edge features, h and e, as well as vector-valued node and edge features, χ and

ξ. The model is then capable of e.g., (1) predicting scalar node, edge, or graph-level

properties while maintaining SE(3) invariance; (2) estimating vector-valued node,

edge, or graph-level properties while ensuring SE(3) equivariance; or (3) updating

node positions in an SE(3)-equivariant manner.

3.4 RESULTS

In this work, we consider four distinct modeling tasks comprised of seven datasets in

total, where implementation details are discussed in Appendix B.3.

3.4.1 Molecular chirality detection

Assessing model sensitivity to molecular chirality. Molecular chirality is an

essential geometric property of 3D molecules for models to consider when making pre-
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dictions for downstream tasks. Simply put, this property describes the ”handedness”

of 3D molecules, in that, certain molecules cannot be geometrically superimposed

upon a mirror reflection of themselves using only 3D rotation and translation oper-

ations. This subsequently poses a key challenge for machine learning models: Can

such predictive models effectively sensitize their predictions to the effects of molecu-

lar chirality such that, under 3D reflections, their molecular feature representations

change accordingly? To answer this question using modern machine learning meth-

ods, we adopt the rectus/sinister (RS) 3D molecular dataset of [81] (i.e., a 70/15/15

train/validation/test split of PubChem3D [82] where conformers correspond to the

same 2D graphs in the same partition to prevent data leakage between splits) to eval-

uate the ability of state-of-the-art machine learning methods to distinguish between

right-handed and left-handed versions of a 3D molecule. In addition, we carefully

follow their experimental setup including dataset splitting; evaluation criteria; scalar

feature sets of atom types, degrees, charges, numbers of hydrogens, hybridizations,

and bond types and distances; and vector feature sets of atom orientations and pair-

wise bond displacements, respectively), where we evaluate each method’s classification

accuracy in distinguishing between right and left-handed versions of a molecule. Base-

line methods for this task include state-of-the-art invariant neural networks (INNs)

and equivariant neural networks (ENNs), where we list each method’s latest results

for this task as reported in [83].

Contribution of frame embeddings for chirality sensitivity. Table 3.1

shows that GCPNet is more accurately able to detect the effects of molecular chi-

rality compared to all other baseline methods (including all other SE(3)-equivariant

models), even without performing any hyperparameter tuning. In particular, GCP-

Net outperforms ChIRo [81], a GNN specifically designed to detect different forms

of chirality in 3D molecules. Moreover, when we ablate GCPNet’s embeddings of

local geometric frames, we find that this E(3)-equivariant (i.e., scalar-wise 3D ro-
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Table 3.1: Comparison of GCPNet with baseline methods for the RS task. The
results are averaged over three independent runs. The top-1 (best) results for this
task are in bold, and the second-best results are underlined.

Type Method Symmetries R/S Accuracy (%) ↑

INN ChIRo [83] SE(3) 98.5

SchNet [83] E(3) 54.4

DimeNet++ [83] E(3) 65.7

SphereNet [83] SE(3) 98.2

ENN EGNN [83] E(3) 50.4

SEGNN [83] SE(3) 83.4

Ours GCPNet w/o Frames E(3) 50.2 ± 0.6

GCPNet SE(3) 98.7 ± 0.1

tation and reflection-invariant) version of GCPNet is no longer able to solve this

important molecular recognition task, resulting in prediction accuracies at parity with

random guessing. These two previous observations highlight that (1) GCPNet’s lo-

cal frame embeddings are critical components of the model’s sensitivity to molecular

chirality and that, (2) using such frame embeddings, GCPNet can flexibly learn

representations of 3D molecules that are more predictive of chemical chirality com-

pared to hand-crafted methods for such tasks. Moreover, these results highlight that,

in order to effectively account for the effects of chirality on molecular structures, a

method must be SE(3)-equivariant such that it employs SE(3)-invariant (and, thereby,

reflection-varying) features for its scalar downstream predictions.

3.4.2 Protein-ligand binding affinity prediction

Evaluating predictions of protein-ligand binding affinity. Protein-ligand bind-

ing affinity (LBA) prediction challenges methods to estimate the binding affinity of
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a protein-ligand complex as a single scalar value [84]. Accurately estimating such

values in a matter of seconds using a machine learning model can provide invaluable

and timely information in the typical drug discovery pipeline [85]. The corresponding

dataset for this SE(3)-invariant task is derived from the ATOM3D dataset [84] and

is comprised of 4,463 nonredundant protein-ligand complexes, where cross-validation

splits are derived using a strict 30% sequence identity cutoff. Results are reported in

terms of the root mean squared error (RMSE), Pearson’s correlation (p), and Spear-

man’s correlation (Sp) between a method’s predictions on the test dataset and the

corresponding ground-truth binding affinity values represented as pK = − log10(K),

where K is the binding affinity measured in Molar units. Baseline comparison meth-

ods for this task include a variety of state-of-the-art CNNs, recurrent neural networks

(RNNs), GNNs, and ENNs, with additional baselines utilizing explicit protein-ligand

interaction information listed in Table 2 of the supplementary materials. Using the

same dataset and dataset splits, results for these methods are reported as in [79],

[86], and [87], respectively. Note, however, that due to their lack of official publicly-

available PyTorch Geometric [88] source code, for this task we include simple PyTorch

Geometric reproductions of PaiNN [89] and the Equivariant Transformer (ET) [90]

as additional equivariant graph neural network and Transformer baselines, respec-

tively. Consequently, due to computational resource constraints, we do not perform

any hyperparameter tuning for these two methods.

The results shown in Table 3.2 reveal that, in operating on atom-level protein-

ligand graph representations, GCPNet achieves the best performance for predicting

protein-ligand binding affinity by a significant margin, notably improving perfor-

mance across all metrics by 7% on average. Here, to the best of our knowledge,

GCPNet is one of the first methods capable of achieving Pearson and Spearman

binding affinity correlations greater than 0.6 on the PDBBind dataset [91] curated as

part of the ATOM3D benchmark (which employs a strict 30% sequence identity cut-

39



off) [84]. Moreover, we find that these correlations are highly statistically significant

(i.e., Pearson’s p-value of 2e− 50, Spearman’s p-value of 2e− 49, and Kendall’s tau

correlation of 0.432 with a p-value of 3e− 45).

Ablating network components reveals impact of model design. Denoted

as ”GCPNet w/o ...” in Table 3.2, our ablation studies with GCPNet for the

LBA task demonstrate the contribution of each component in its model design. In

particular, our proposed local frame embeddings improve GCPNet’s performance

by more than 15% across all metrics (GCPNet w/o Frames), where we hypothesize

these performance improvements come from using these frame embeddings to enhance

the model’s sensitivity to molecular chirality. Similarly, our proposed residual GCP

module (i.e., ResGCP) improves GCPNet’s performance by 23% on average.

Specifically of interest is the observation that independent removal of scalar and

vector-valued features within GCPNet appears to severely decrease GCPNet’s per-

formance for LBA prediction. Notably, removing the model’s access to scalar-valued

node and edge features (i.e., one-hot atom types and edge distance embeddings, re-

spectively) degrades performance by 70% on average, while not allowing the model to

access vector-valued node and edge features (i.e., sequence-based orientation vectors

and pairwise atom displacement vectors, respectively) reduces performance by 42%

on average. One possible explanation for these observations is that both types of fea-

ture representations the baseline GCPNet model learns (i.e., scalars and vectors) are

useful for understanding protein-ligand interactions. In addition, our ablation results

in Table 3.2 suggest that our proposed frame embeddings and ResGCP module are

complementary to these scalar and vector-valued features in the context of predicting

the binding affinity of a protein-ligand complex.
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3.4.3 Protein model quality assessment

Evaluating ranking predictions for protein structure decoys. Protein struc-

ture ranking (PSR) requires methods to predict the overall quality of a 3D pro-

tein structure when comparing it to a reference (i.e., native) protein structure [84].

The quality of a protein structure is reported as a single scalar value representing a

method’s predicted global distance test (GDT TS) score [92] between the provided

decoy structure and the native structure. Such information is crucial in drug discov-

ery efforts when one is tasked with designing a drug (e.g., ligand) that should bind

to a particular protein target, notably when such targets have not yet had their 3D

structures experimentally determined and have rather had them predicted compu-

tationally using methods such as AlphaFold 2 [15]. The respective dataset for this

SE(3)-invariant task is also derived from the ATOM3D dataset [84] and is comprised

of 40,950 decoy structures corresponding to 649 total targets, where cross-validation

splits are created according to a target’s release year in the Critical Assessment of

Techniques for Protein Structure Prediction (CASP) competition [93]. Results are

reported in terms of the Pearson’s correlation (p), Spearman’s correlation (Sp), and

Kendall’s tau correlation (K) between a method’s predictions on the test dataset

and the corresponding ground-truth GDT TS values, where local results are aver-

aged across predictions for individual targets and global results are averaged directly

across all targets. Baseline comparison methods for this task include a composition

of state-of-the-art CNNs, GNNs, and ENNs (including our reproductions of PaiNN

and ET), as well as previous statistics-based methods. Using the same dataset and

dataset splits, results for these methods are reported as in [86] and [84], respectively.

Conveying a similar message to that in Table 3.2, the results in Table 3.3 demon-

strate that, in operating on atom-level protein graphs, GCPNet performs best

against all other state-of-the-art models for the task of estimating a 3D protein struc-

ture’s quality (i.e., PSR). In this setting, GCPNet outperforms all other methods
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across all local and global metrics by 2.5% on average. Once again, GCPNet’s pre-

dictions are highly statistically significant, this time with Pearson, Spearman, and

Kendall tau p-values all below 1e− 50, respectively.

Identifying components for effective protein structure ranking. Our ab-

lation studies with GCPNet, in the context of PSR, once more reveal that the

design of our local frames, ResGCP module, and scalar and vector feature channels

are all beneficial for enhancing GCPNet’s ability to analyze a given 3D graph input.

Here, in sensitizing the model to chemical chirality, our local frame embeddings im-

prove GCPNet’s performance for PSR by 4% on average. Similarly, our ResGCP

module improves the model’s performance by 5%. Interestingly, without access to

scalar-valued node and edge features (i.e., the same as those used for the LBA task),

GCPNet is unable to produce valid predictions for the PSR test dataset due to

what appears to be a phenomenon of vector-wise latent variable collapse [94]. This

finding suggests that, for the PSR task, the baseline GCPNet model relies strongly

on the scalar-valued representations it produces. Lastly, including vector-valued node

and edge features (i.e., the same as those used for the LBA task) within GCPNet

improves the model’s performance for the PSR task by 9%.

3.4.4 Future position forecasting for Newtonian particle systems

Evaluating trajectory predictions for Newtonian many-body systems. New-

tonian many-body systems modeling (NMS) asks methods to forecast the future posi-

tions of particles in many-body systems of various sizes [77], bridging the gap between

the domains of machine learning and physics. In our experimental results for the NMS

task, the four systems (i.e., datasets) on which we evaluate each method are com-

prised of increasingly more nodes and are influenced by force fields of increasingly

complex directional origins for which to model, namely electrostatic force fields for

5-body (ES(5)) and 20-body (ES(20)) systems as well as for 20-body systems under
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the influence of an additional gravity field (G+ES(20)) and Lorentz-like force field

(L+ES(20)), respectively. The four datasets for this SE(3)-equivariant task were gen-

erated using the descriptions and source code of [77], where each dataset is comprised

of 7,000 total trajectories. Results are reported in terms of the mean squared error

(MSE) between a method’s node position predictions on the test dataset and the cor-

responding ground-truth node positions after 1,000 timesteps. Baseline comparison

methods for this task include a collection of state-of-the-art GNNs, ENNs, and Trans-

formers (including our reproductions of PaiNN and ET), where we list each method’s

latest results for this task as reported in [77].

The results in Table 3.4 show that GCPNet achieves the lowest MSE averaged

across all four NMS datasets, improving upon the state-of-the-art MSE for trajec-

tory predictions in this task by 19% on average. In particular, GCPNet achieves

the best results for two of the four NMS datasets considered in this work, where

these two datasets are respectively the first and third most difficult NMS datasets

for methods to model. On the two remaining datasets, GCPNet matches the per-

formance of prior state-of-the-art methods such as ClofNet [77]. Moreover, across

all four datasets, GCPNet’s trajectory predictions yield an RMSE of 0.0963 and

achieve Pearson, Spearman, and Kendall’s tau correlations of 0.999, 0.999, and 0.981,

respectively, where all such correlation values are highly statistically significant (i.e.,

p-values < 1e− 50). Note that, to calculate these correlation values, we score GCP-

Net’s vector-valued predictions independently for each coordinate axis and then av-

erage the resulting metrics. Also note that we only compare methods such as ClofNet

to GCPNet in the context of the NMS task, as e.g., ClofNet is specifically designed

always to predict new 3D coordinates for each of its 3D graph inputs, with coordinate

updates being the primary predictive target for the NMS dataset but with other tasks

not targeting updated coordinates.

Analyzing components for successful trajectory forecasting. Once again,
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our ablation studies with GCPNet demonstrate the importance of GCPNet’s local

frame embeddings, scalar node and edge features (i.e., invariant velocity encodings

and edge type and distance embeddings, respectively), and ResGCP module. Here,

we note that we were not able to include an ablation study on GCPNet’s vector-

valued node and edge features (i.e., velocity and orientation encodings as well as

pairwise atom displacements, respectively) since they are directly used to predict node

position displacements for trajectory forecasting. Table 3.4 shows that each model

component synergistically enables GCPNet to achieve new state-of-the-art results

for the NMS task. In enabling the model to detect global forces, our proposed local

frame embeddings improve GCPNet’s ability to learn many-body system dynamics

by 6% on average across all dataset contexts. Specifically interesting to note is that

these local frame embeddings improve the model’s trajectory predictions within the

most complex dataset context (i.e., L+ES(20)) by 14%, suggesting that such frame

embeddings improve GCPNet’s ability to learn many-body system dynamics even

in the presence of complex global force fields. Furthermore, GCPNet’s ResGCP

module and scalar-valued features improve the model’s performance for modeling

many-body systems by 35% and 57%, respectively.

Across all tasks studied in this work, GCPNet improves upon the overall perfor-

mance of all previous methods. Our experiments demonstrate this for both node-level

(e.g., NMS) and graph-level (e.g., LBA) prediction tasks, verifying GCPNet’s abil-

ity to encode useful information for both scales of granularity. Furthermore, we have

demonstrated the importance of each model component within GCPNet, showing

how these components are complementary to each other in the context of represen-

tation learning over 3D molecular data. Lastly, in Appendix Table B.7, we report

the run time of GCPNet on each task’s test dataset to enable future methods to

directly compare their computational run time to that of GCPNet.
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3.5 DISCUSSION

In this chapter, we introduced GCPNet, a state-of-the-art GNN for 3D molecu-

lar graph representation learning. We have demonstrated its utility through several

benchmark studies. In the next chapter, we detail extensions of GCPNet that in-

crease its geometric expressiveness as well as explore its applications for generative

modeling of 3D molecules.
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Table 3.2: Comparison of GCPNet with baseline methods for the LBA task. The
results are averaged over three independent runs. The top-1 (best) results for this
task are in bold, and the second-best results are underlined.

Type Method RMSE ↓ p ↑ Sp ↑

CNN 3DCNN [79] 1.416 ± 0.021 0.550 0.553

DeepDTA [79] 1.866 ± 0.080 0.472 0.471

DeepAffinity [86] 1.893 ± 0.650 0.415 0.426

RNN Bepler and Berger [79] 1.985 ± 0.006 0.165 0.152

TAPE [79] 1.890 ± 0.035 0.338 0.286

ProtTrans [79] 1.544 ± 0.015 0.438 0.434

GNN GCN [79] 1.601 ± 0.048 0.545 0.533

DGAT [86] 1.719 ± 0.047 0.464 0.472

DGIN [86] 1.765 ± 0.076 0.426 0.432

DGAT-GCN [86] 1.550 ± 0.017 0.498 0.496

MaSIF [79] 1.484 ± 0.018 0.467 0.455

IEConv [79] 1.554 ± 0.016 0.414 0.428

Holoprot-Full Surface [79] 1.464 ± 0.006 0.509 0.500

Holoprot-Superpixel [79] 1.491 ± 0.004 0.491 0.482

ProNet-Amino-Acid [79] 1.455 ± 0.009 0.536 0.526

ProNet-Backbone [79] 1.458 ± 0.003 0.546 0.550

ProNet-All-Atom [79] 1.463 ± 0.001 0.551 0.551

GeoSSL-DDM [87] 1.451 ± 0.030 0.577 0.572

ENN Cormorant [86] 1.568 ± 0.012 0.389 0.408

PaiNN 1.698 ± 0.050 0.366 0.358

ET 1.490 ± 0.019 0.564 0.532

GVP [86] 1.594 ± 0.073 0.434 0.432

GBP [86] 1.405 ± 0.009 0.561 0.557

Ours GCPNet w/o Frames 1.485 ± 0.015 0.521 0.504

GCPNet w/o ResGCP 1.514 ± 0.008 0.471 0.468

GCPNet w/o Scalars 1.685 ± 0.000 0.050 0.000

GCPNet w/o Vectors 1.727 ± 0.005 0.270 0.304

GCPNet 1.352 ± 0.003 0.608 0.607
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Table 3.3: Comparison of GCPNet with baseline methods for the PSR task. Local
metrics are averaged across target-aggregated metrics. The best results for this task
are in bold, and the second-best results are underlined. N/A denotes a metric that
could not be computed.

Local Global

Method p ↑ Sp ↑ K ↑ p ↑ Sp ↑ K ↑

3DCNN [86] 0.557 0.431 0.308 0.780 0.789 0.592

GCN [84] 0.500 0.411 0.289 0.747 0.750 0.547

ProQ3D [86] 0.444 0.432 0.304 0.796 0.772 0.594

VoroMQA [86] 0.412 0.419 0.291 0.688 0.651 0.505

RWplus [86] 0.192 0.167 0.137 0.033 0.056 0.011

SBROD [86] 0.431 0.413 0.291 0.551 0.569 0.393

Ornate [86] 0.393 0.371 0.256 0.625 0.669 0.481

DimeNet [86] 0.302 0.351 0.285 0.614 0.625 0.431

GraphQA [86] 0.357 0.379 0.251 0.821 0.820 0.618

PaiNN 0.518 0.444 0.315 0.773 0.813 0.611

ET 0.564 0.466 0.330 0.813 0.814 0.611

GVP [86] 0.581 0.462 0.331 0.805 0.811 0.616

GBP [86] 0.612 0.517 0.372 0.856 0.853 0.656

GCPNet w/o Frames 0.588 0.512 0.367 0.854 0.851 0.657

GCPNet w/o ResGCP 0.576 0.509 0.365 0.852 0.847 0.648

GCPNet w/o Scalars N/A N/A N/A N/A N/A N/A

GCPNet w/o Vectors 0.571 0.497 0.356 0.802 0.804 0.608

GCPNet 0.616 0.534 0.385 0.871 0.869 0.676
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Table 3.4: Comparison of GCPNet with baseline methods for the NMS task. Results
are reported in terms of the MSE for future position prediction over four test datasets
of increasing modeling difficulty, graph sizes, and composed force field complexities.
The final column reports each method’s MSE averaged across all four test datasets.
The best results for this task are in bold, and the second-best results are underlined.
N/A denotes an experiment that could not be performed due to a method’s numerical
instability.

Method ES(5) ES(20) G+ES(20) L+ES(20) Average

GNN [77] 0.0131 0.0720 0.0721 0.0908 0.0620

TFN [77] 0.0236 0.0794 0.0845 0.1243 0.0780

SE(3)-Transformer [77] 0.0329 0.1349 0.1000 0.1438 0.1029

Radial Field [77] 0.0207 0.0377 0.0399 0.0779 0.0441

PaiNN 0.0158 N/A N/A N/A N/A

ET 0.1653 0.1788 0.2122 0.2989 0.2138

EGNN [77] 0.0079 0.0128 0.0118 0.0368 0.0173

ClofNet [77] 0.0065 0.0073 0.0072 0.0251 0.0115

GCPNet w/o Frames 0.0067 0.0074 0.0074 0.0200 0.0103

GCPNet w/o ResGCP 0.0090 0.0135 0.0099 0.0278 0.0150

GCPNet w/o Scalars 0.0119 0.0173 0.0170 0.0437 0.0225

GCPNet 0.0070 0.0071 0.0073 0.0173 0.0097
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Chapter 4

GEOMETRY-COMPLETE DIFFUSION FOR 3DMOLECULE

GENERATION AND OPTIMIZATION

Adapted from Alex Morehead and Jianlin Cheng. ”Geometry-complete diffusion for

3D molecule generation and optimization”. Communications Chemistry 7.1 (2024):

150.

4.1 ABSTRACT

Generative deep learning methods have recently been proposed for generating 3D

molecules using equivariant graph neural networks (GNNs) within a denoising dif-

fusion framework. However, such methods are unable to learn important geometric

properties of 3D molecules, as they adopt molecule-agnostic and non-geometric GNNs

as their 3D graph denoising networks, which notably hinders their ability to generate

valid large 3D molecules. In this chapter, we address these gaps by introducing the

Geometry-Complete Diffusion Model (GCDM) for 3D molecule generation, which

outperforms existing 3D molecular diffusion models by significant margins across

conditional and unconditional settings for the QM9 dataset and the larger GEOM-

Drugs dataset, respectively. Importantly, we demonstrate that GCDM’s generative

denoising process enables the model to generate a significant proportion of valid and

energetically-stable large molecules at the scale of GEOM-Drugs, whereas previous

methods fail to do so with the features they learn. Additionally, we show that ex-
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tensions of GCDM can not only effectively design 3D molecules for specific protein

pockets but can be repurposed to consistently optimize the geometry and chemical

composition of existing 3D molecules for molecular stability and property specificity,

demonstrating new versatility of molecular diffusion models. Code and data are freely

available at https://github.com/BioinfoMachineLearning/Bio-Diffusion.

4.2 INTRODUCTION

Generative modeling has recently been experiencing a renaissance in modeling efforts

driven largely by denoising diffusion probabilistic models (DDPMs). At a high level,

DDPMs are trained by learning how to denoise a noisy version of an input example.

For example, in the context of computer vision, Gaussian noise may be successively

added to an input image with the goals of a DDPM in mind. We would then desire

for a generative model of images to learn how to successfully distinguish between the

original input image’s feature signal and the noise added to the image thereafter. If

a model can achieve such outcomes, we can use the model to generate new images

by first sampling multivariate Gaussian noise and then iteratively removing, from the

current state of the image, the noise predicted by the model. This classic formula-

tion of DDPMs has achieved significant results in the space of image generation [95],

audio synthesis [96], and even meta-learning by learning how to conditionally gen-

erate neural network checkpoints [97]. Furthermore, such an approach to generative

modeling has expanded its reach to encompass scientific disciplines such as compu-

tational biology [98, 99, 100, 101, 102], computational chemistry [103, 104, 105], and

computational physics [106].

Concurrently, the field of geometric deep learning [26] has seen a sizeable increase

in research interest lately, driven largely by theoretical advances within the discipline

[107] as well as by applications of such methodology [108, 72, 109, 110]. Notably, such

applications even include what is considered by many researchers to be a solution to
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Figure 4.1: A framework overview of the proposed Geometry-Complete Diffusion
Model (GCDM) for geometric and chirality-aware 3D molecule generation. The
framework consists of (i.) a graph (topology) definition process; (ii.) a GCPNet-
based graph neural network for SE(3)-equivariant graph representation learning; (iii.)
denoising of 3D input graphs using GCPNet++; and (iv.) application of a trained
GCPNet++ denoising network for 3D molecule generation.

the problem of predicting 3D protein structures from their corresponding amino acid

sequences [15]. Such an outcome arose, in part, from recent advances in sequence-

based language modeling efforts [11, 25] as well as from innovations in equivariant

neural network modeling [111].

However, it is currently unclear how the expressiveness of geometric neural net-

works impacts the ability of generative methods that incorporate them to faithfully

model a geometric data distribution. In addition, it is currently unknown whether

diffusion models for 3D molecules can be repurposed for important, real-world tasks

without retraining or fine-tuning and whether geometric diffusion models are better

equipped for such tasks. Toward this end, in this work, we provide the following

findings.

• Neural networks that perform message-passing with geometric quantities enable

diffusion generative models of 3D molecules to generate valid and energetically-
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stable large molecules whereas non-geometric message-passing networks fail to

do so, where we introduce key computational metrics to enable such findings.

• Physical inductive biases such as invariant graph attention and molecular chi-

rality both play important roles in diffusion-generating valid 3D molecules.

• Our newly-proposed Geometry-Complete Diffusion Model (GCDM - see Figure

4.1), which is the first diffusion model to incorporate the above insights and

achieve the ideal type of equivariance for 3D molecule generation (i.e., SE(3)

equivariance), establishes state-of-the-art (SOTA) results for conditional 3D

molecule generation on the QM9 dataset as well as for unconditional molecule

generation on the GEOM-Drugs dataset of large 3D molecules, for the latter

more than doubling PoseBusters validity rates; generates more unique and novel

small molecules for unconditional generation on the QM9 dataset; and achieves

better Vina energy scores and more than twofold higher PoseBusters validity

rates [112] for protein-conditioned 3D molecule generation.

• We further demonstrate that geometric diffusion models such as GCDM can

consistently perform 3D molecule optimization for molecular stability as well

as for specific molecular properties without requiring any retraining and can

consistently do so whereas non-geometric diffusion models cannot.

4.3 RESULTS

4.3.1 Unconditional 3D molecule generation - QM9

The first dataset used in our experiments, the QM9 dataset [113], contains molecular

properties and 3D atom coordinates for 130k small molecules. Each molecule in QM9

can contain up to 29 atoms after hydrogen atoms are imputed for each molecule

following dataset postprocessing as in [114]. For the task of 3D molecule generation,

we train GCDM to unconditionally generate molecules by producing atom types (H,
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C, N, O, and F), integer atom charges, and 3D coordinates for each of the molecules’

atoms. Following [115], we split QM9 into training, validation, and test partitions

consisting of 100k, 18k, and 13k molecule examples, respectively.

Metrics. We measure each method’s average negative log-likelihood (NLL) over

the corresponding test dataset, for methods that report this quantity. Intuitively, a

method achieving a lower test NLL compared to other methods indicates that the

method can more accurately predict denoised pairings of atom types and coordinates

for unseen data, implying that it has fit the underlying data distribution more pre-

cisely than other methods. In terms of molecule-specific metrics, we adopt the scoring

conventions of [116] by using the distance between atom pairs and their respective

atom types to predict bond types (single, double, triple, or none) for all but one

baseline method (i.e., E-NF). Subsequently, we measure the proportion of generated

atoms that have the right valency (atom stability - AS) and the proportion of gen-

erated molecules for which all atoms are stable (molecule stability - MS). To offer

additional insights into each method’s behavior for 3D molecule generation, we also

report the validity (Val) of the generated molecules as determined by RDKit [117],

the uniqueness of the generated molecules overall (Uniq), and whether the gener-

ated molecules pass each of the de novo chemical and structural validity tests (i.e.,

sanitizable, all atoms connected, valid bond lengths and angles, no internal steric

clashes, flat aromatic rings and double bonds, low internal energy, correct valence,

and kekulizable) proposed in the PoseBusters software suite [112] and adopted by

recent works on molecule generation tasks [118, 119]. Each method’s results in the

top half (bottom half) of Table 4.1 are reported as the mean and standard deviation

(mean and Student’s t-distribution 95% confidence error intervals) (±) of each metric

across three (five) test runs on QM9, respectively.

Baselines. Besides including a reference point for molecule quality metrics using

QM9 itself (i.e., Data), we compare GCDM (a geometry-complete DDPM - i.e., GC-
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DDPM) to 10 baseline models for 3D molecule generation, each trained and tested

using the same corresponding QM9 splits for fair comparisons: G-Schnet [120]; Equiv-

ariant Normalizing Flows (E-NF) [116]; Graph Diffusion Models (GDM) [114] and

their variations (i.e., GCM-aug); Equivariant Diffusion Models (EDM) [114]; Bridge

and Bridge + Force [121]; latent diffusion models (LDMs) such as GraphLDM and its

variation GraphLDM-aug [122]; as well as the state-of-the-art GeoLDM method [122].

Note that we specifically include these baselines as representative implicit bond pre-

diction methods for which bonds are inferred using their generated molecules’ atom

types and inter-atom distances, in contrast to explicit bond prediction approaches

such as those of [123] and [124] for fair comparisons with our method. For each of

such baseline methods, we report their results as curated by [121] and [122]. We

further include two GCDM ablation models to more closely analyze the impact of

certain key model components within GCDM. These two ablation models include

GCDM without chiral and geometry-complete local frames Fij (i.e., GCDM w/o

Frames) and GCDM without scalar message attention (SMA) applied to each edge

message (i.e., GCDM w/o SMA). In Section 4.5 as well as the Supplementary Meth-

ods of Appendix C.1.2 and the Supplementary Notes of Appendix C.2, we further

discuss GCDM’s design, hyperparameters, and optimization with these model con-

figurations.

Figure 4.2: PB-valid 3D molecules generated by GCDM for the QM9
dataset. The corresponding SMILES strings for these generated small
molecules, from left to right, are as follows: (a) [H]/N=C(\C#N)NCC, (b)
CC[N]c1n[nH]c(=O)o1, (c) O=CCNC(=O)CCO, (d) C/N=c1/[nH]c(O)c(N)o1, (e)
[H]/N=C(/C[C]([NH])OC)OC, and (f) Oc1coc2cnoc12.
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Type Method NLL ↓ AS (%) ↑ MS (%) ↑ Val (%) ↑ Val and Uniq (%) ↑

NF E-NF -59.7 85.0 4.9 40.2 39.4

Generative GNN G-Schnet - 95.7 68.1 85.5 80.3

DDPM GDM -94.7 97.0 63.2 - -

GDM-aug -92.5 97.6 71.6 90.4 89.5

EDM -110.7 ± 1.5 98.7 ± 0.1 82.0 ± 0.4 91.9 ± 0.5 90.7 ± 0.6

Bridge - 98.7 ± 0.1 81.8 ± 0.2 - 90.2

Bridge + Force - 98.8 ± 0.1 84.6 ± 0.3 92.0 90.7

LDM GraphLDM - 97.2 70.5 83.6 82.7

GraphLDM-aug - 97.9 78.7 90.5 89.5

GeoLDM - 98.9 ± 0.1 89.4 ± 0.5 93.8 ± 0.4 92.7 ± 0.5

GC-DDPM - Ours GCDM w/o Frames -162.3 ± 0.3 98.4 ± 0.0 81.7 ± 0.5 93.9 ± 0.1 92.7 ± 0.1

GCDM w/o SMA -131.3 ± 0.8 95.7 ± 0.1 51.7 ± 1.4 83.1 ± 1.7 82.8 ± 1.7

GCDM -171.0 ± 0.2 98.7 ± 0.0 85.7 ± 0.4 94.8 ± 0.2 93.3 ± 0.0

Data 99.0 95.2 97.7 97.7

Method NLL ↓ AS (%) ↑ MS (%) ↑ Val (%) ↑ Val and Uniq (%) ↑ Novel (%) ↑ PB-Valid (%) ↑

GeoLDM - 98.9 ± 0.0 89.8 ± 0.4 93.6 ± 0.2 91.8 ± 0.2 53.5 ± 0.6 93.1 ± 0.4

GCDM -169.4 ± 0.8 98.7 ± 0.1 86.0 ± 0.7 94.9 ± 0.3 93.4 ± 0.3 58.7 ± 0.5 91.9 ± 0.5

Table 4.1: Comparison of GCDM with baseline methods for 3D molecule genera-
tion. The results in the top half of the table are reported in terms of the negative
log-likelihood (NLL) - log p(x,h, N), atom stability, molecule stability, validity, and
uniqueness of 10,000 samples drawn from each model, with standard deviations (±)
for each model across three runs on QM9. The results in the bottom half of the
table are for methods specifically evaluated across five runs on QM9 using Student’s
t-distribution 95% confidence intervals for per-metric errors, additionally with novelty
(Novel) defined as the percentage of (valid and unique) generated molecule SMILES
strings that were not found in the QM9 dataset and PoseBusters validity (PB-Valid)
defined as the percentage of generated molecules that pass all relevant de novo struc-
tural and chemical sanity checks listed in Section 4.3.1. The top-1 (best) results for
this task are in bold, and the second-best results are underlined, with - denoting a
metric value that is not available.

Results. In the top half of Table 4.1, we see that GCDM achieves the highest

percentage of probable (NLL), valid, and unique molecules compared to all baseline

methods, with AS and MS results marginally lower than those of GeoLDM yet with

lower standard deviations. In the bottom half of Table 4.1, where we reevaluate

GCDM and GeoLDM using 5 sampling runs and report 95% confidence intervals

for each metric, GCDM generates 1.6% more RDKit-valid and unique molecules and
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5.2% more novel molecules compared to GeoLDM, all while offering the best reported

NLL for the QM9 test dataset. This result indicates that although GeoLDM offers

novelty rates close to parity (i.e., 50%), GCDM nearly matches the stability and

PB-validity rates of GeoLDM while yielding novel molecules nearly 60% of the time

on average, suggesting that GCDM may prove more useful for accurately exploring

the space of novel yet valid small molecules. Our ablation of SMA within GCDM

demonstrates that, to generate stable 3D molecules, GCDM heavily relies on both

being able to perform a lightweight version of fully-connected graph self-attention

[11], which suggests avenues of future research that will be required to scale up such

generative models to large biomolecules such as proteins. Additionally, removing

geometric local frame embeddings from GCDM reveals that the inductive biases

of molecular chirality and geometry-completeness are important contributing factors

in GCDM achieving these SOTA results. Figure 4.2 illustrates PoseBusters-valid

examples of QM9-sized molecules generated by GCDM.

4.3.2 Property-conditional 3D molecule generation - QM9

Baselines. Towards the practical use case of conditional generation of 3D molecules,

we compare GCDM to existing E(3)-equivariant models, EDM [114] and GeoLDM

[122], as well as to two naive baselines: ”Naive (Upper-bound)” where a molecular

property classifier ϕc predicts molecular properties given a method’s generated 3D

molecules and shuffled (i.e., random) property labels; and ”# Atoms” where one

uses the numbers of atoms in a method’s generated 3D molecules to predict their

molecular properties. For each baseline method, we report its mean absolute error

(MAE) in terms of molecular property prediction by an ensemble of three EGNN

classifiers ϕc [18] as reported in [114]. For GCDM, we train each conditional model

by conditioning it on one of six distinct molecular property feature inputs - α, gap,

homo, lumo, µ, and Cv - for approximately 1,500 epochs using the QM9 validation
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split of [114] as the model’s training dataset and the QM9 training split of [114] as the

corresponding EGNN classifier ensemble’s training dataset. Consequently, one can

expect the gap between a method’s performance and that of ”QM9 (Lower-bound)”

to decrease as the method more accurately generates property-specific molecules.

Task α ↓ ∆ϵ ↓ ϵHOMO ↓ ϵLUMO ↓ µ ↓ Cv ↓
Units Bohr3 meV meV meV D cal

mol
K

Naive (Upper-bound) 9.01 1470 645 1457 1.616 6.857

# Atoms 3.86 866 426 813 1.053 1.971

EDM 2.76 655 356 584 1.111 1.101

GeoLDM 2.37 587 340 522 1.108 1.025

GCDM 1.97 602 344 479 0.844 0.689

QM9 (Lower-bound) 0.10 64 39 36 0.043 0.040

Task α ↓ ∆ϵ ↓ ϵHOMO ↓ ϵLUMO ↓ µ ↓ Cv ↓
Units Bohr3 meV meV meV D cal

mol
K

GeoLDM 2.77 ± 0.12 655 ± 20.57 357 ± 5.68 565 ± 10.62 1.089 ± 0.02 1.070 ± 0.04

GCDM 1.99 ± 0.01 595 ± 14.34 346 ± 1.23 480 ± 6.58 0.855 ± 0.00 0.698 ± 0.01

Metric α PB-Valid (%) ↑ ∆ϵ PB-Valid (%) ↑ ϵHOMO PB-Valid (%) ↑ ϵLUMO PB-Valid (%) ↑ µ PB-Valid (%) ↑ Cv PB-Valid (%) ↑

GeoLDM 93.7 ± 0.5 92.8 ± 0.3 93.9 ± 0.4 93.3 ± 0.6 93.2 ± 1.3 92.5 ± 0.8

GCDM 92.3 ± 0.3 92.5 ± 0.8 92.7 ± 0.5 92.7 ± 0.6 92.4 ± 0.4 91.7 ± 0.4

Table 4.2: Comparison of GCDM with baseline methods for property-conditional 3D
molecule generation. The results in the top half of the table are reported in terms
of the MAE for molecular property prediction by an EGNN classifier ϕc on a QM9
subset, with results listed for GCDM-generated samples as well as for four separate
baseline methods. The results in the bottom half of the table (where GeoLDM is
retrained using its official code repository due to the unavailability of its conditional
model checkpoints) are likewise listed for selected methods yet instead report (across
an ensemble of three separately-trained EGNN property classifier models, each with
a distinct random seed) Student’s t-distribution 95% confidence error intervals for
each property metric as well as the percentage of PoseBusters-validated (PB-Valid)
de novo generated molecules. The top-1 (best) conditioning results for this task are
in bold, and the second-best results are underlined.

Results. We see in Table 4.2 that GCDM achieves the best overall results
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Figure 4.3: PB-valid 3D molecules generated by GCDM using increasing values of
α. The structural characteristics of the generated molecules are gradually altered as
α ranges from 68.7 (a) to 93.6 (f).

compared to all baseline methods in conditioning on a given molecular property, with

conditionally-generated samples shown in Figure 4.3 (Note: PSI4-computed property

values [125] for (a) and (f) are 69.1 Bohr3 (energy: -402 a.u.) and 89.7 Bohr3 (energy:

-419 a.u.), respectively, at the DFT/B3LYP/6-31G(2df,p) level of theory [113,

126]). In particular, as shown in the bottom half of this table, GCDM surpasses the

MAE results of the SOTA GeoLDM method (by 19% on average) for all six molecular

properties - α, gap, homo, lumo, µ, and Cv - by 28%, 9%, 3%, 15%, 21%, and 35%,

respectively, while nearly matching the PB-Valid rates of GeoLDM (similar to the

results in Table 4.1). These results qualitatively and quantitatively demonstrate that,

using geometry-complete diffusion, GCDM enables notably precise generation of 3D

molecules with specific molecular properties (e.g., α - polarizability).

4.3.3 Unconditional 3D molecule generation - GEOM-Drugs

The second dataset used in our experiments, the GEOM-Drugs dataset, is a well-

known source of large, 3D molecular conformers for downstream machine learning

tasks. It contains 430k molecules, each with 44 atoms on average and with up to

as many as 181 atoms after hydrogen atoms are imputed for each molecule following

dataset postprocessing as in [114]. For this experiment, we collect the 30 lowest-

energy conformers corresponding to a molecule and task each baseline method with

generating new molecules with 3D positions and types for each constituent atom.
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Here, we also adopt the negative log-likelihood, atom stability, and molecule stability

metrics as defined in Section 4.3.1 and train GCDM using the same hyperparameters

as listed in the Supplementary Note of Appendix C.2.2, with the exception of training

for approximately 75 epochs on GEOM-Drugs.

Baselines. In this experiment, we compare GCDM to several state-of-the-art

baseline methods for 3D molecule generation on GEOM-Drugs. Similar to our ex-

periments on QM9, in addition to including a reference point for molecule quality

metrics using GEOM-Drugs itself (i.e., Data), here we also compare against E-NF,

GDM, GDM-aug, EDM, Bridge along with its variant Bridge + Force, as well as

GraphLDM, GraphLDM-aug, and GeoLDM. As in Section 4.3.1, each method’s re-

sults in the top half (bottom half) of the table are reported as the mean and standard

deviation (mean and Student’s t-distribution 95% confidence interval) (±) of each

metric across three (five) test runs on GEOM-Drugs.

Figure 4.4: PB-valid 3D molecules generated by GCDM for the
GEOM-Drugs dataset. The corresponding SMILES strings for these
generated large molecules, from left to right, are as follows: (a)
CC(C)=N[N]C(=O)O[C]([CH]C(=O)NCCCCc1cccnc1)Cc1ccc2c(c1)OCO2, (b)
CN(N)Cc1cccnc1C(=O)NCCCc1ccc(F)cc1, (c) C=CCC(=O)c1cc(C(N)=O)c2ccccc2n1,
(d) CC(=O)N/N=C/N=C/C=C\N=C(/O)[C](O)CC(=O)N(O)Cc1ccc(F)c(F)c1,
(e) COC(=O)/C(CN)=C(\[CH]c1cc(C(C)=O)c(C)n1C)c1cc(Cl)ccc1O, and (f)
CC[C@@H](C)/N=C/[C](N[N+](=O)[O-])C(=O)c1ccc(C(=O)O)cc1.

Results. To start, Table 4.3 displays an interesting phenomenon that is important

to note: Due to the size and atomic complexity of GEOM-Drugs’ molecules and the

subsequent errors accumulated when estimating bond types based on such inter-atom

distances, the baseline results for the molecule stability metrics measured here (i.e.,
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Type Method NLL ↓ AS (%) ↑ MS (%) ↑

NF E-NF - 75.0 0.0

DDPM GDM -14.2 75.0 0.0

GDM-aug -58.3 77.7 0.0

EDM -137.1 81.3 0.0

Bridge - 81.0 ± 0.7 0.0

Bridge + Force - 82.4 ± 0.8 0.0

LDM GraphLDM - 76.2 0.0

GraphLDM-aug - 79.6 0.0

GeoLDM - 84.4 0.0

GC-DDPM - Ours GCDM w/o Frames 769.7 88.0 ± 0.3 3.4 ± 0.3

GCDM w/o SMA 3505.5 43.9 ± 3.6 0.1 ± 0.0

GCDM -234.3 89.0 ± 0.8 5.2 ± 1.1

Data 86.5 2.8

Method NLL ↓ AS (%) ↑ MS (%) ↑ Val (%) ↑ Val and Uniq (%) ↑ Novel (%) ↑ PB-Valid (%) ↑

GeoLDM - 84.4 ± 0.1 0.6 ± 0.1 99.5 ±0.1 99.4 ± 0.1 - 38.3 ± 0.5

GCDM -215.1 ± 3.8 88.1 ± 0.1 4.3 ± 0.4 95.5 ± 0.1 95.5 ± 0.1 95.5 ± 0.1 77.0 ± 0.1

Table 4.3: Comparison of GCDM with baseline methods for 3D molecule generation.
The results in the top half of the table are reported in terms of each method’s negative
log-likelihood, atom stability, and molecule stability with standard deviations (±)
across three runs on GEOM-Drugs, each drawing 10,000 samples from the model.
The results in the bottom half of the table are for methods specifically evaluated
across five runs on QM9 using Student’s t-distribution 95% confidence intervals for
per-metric errors, additionally with validity and uniqueness (Val and Uniq), novelty
(Novel), and PoseBusters validity (PB-Valid) defined likewise as in Section 4.3.1;
The top-1 (best) results for this task are in bold, and the second-best results are
underlined.

Data) are much lower than those collected for the QM9 dataset. Thus, reporting

additional chemical and structural validity metrics (e.g., PB-Valid) for comparison

is crucial to accurately assess a method’s performance in this context, which we do

60



Figure 4.5: A comparison of the energy ratios [112] of 10,000 large 3D molecules
generated by GCDM and GeoLDM, a baseline state-of-the-art method. Employing
Student’s t-distribution 95% confidence intervals, GCDM achieves a mean energy
ratio of 2.98 ± 0.13, whereas GeoLDM yields a mean energy ratio of 4.19 ± 0.09.

in the bottom half of Table 4.3. Nonetheless, for GEOM-Drugs, GCDM supersedes

EDM’s SOTA negative log-likelihood results by 57% and advances GeoLDM’s SOTA

atom and molecule stability results by 4% and more than sixfold, respectively. More

importantly, however, GCDM can generate a significant proportion of PB-valid large

molecules, surpassing even the reference molecule stability rate of the GEOM-Drugs

dataset (i.e., 2.8) by 54%, demonstrating that geometric diffusion models such as

GCDM can not only effectively generate valid large molecules but can also generalize

beyond the native distribution of stable molecules within GEOM-Drugs.

Figure 4.4 illustrates PoseBusters-valid examples of large molecules generated by

GCDM at the scale of GEOM-Drugs. As an example of the notion that GCDM
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produces low energy structures for a generated molecular graph, the free energies for

Figures 4.4 (a) and (f) were computed to be -3 kcal/mol and -2 kcal/mol, respectively,

using CREST 2.12 [127] at the GFN2-xTB level of theory (which matches the corre-

sponding free energy distribution mean for the GEOM-Drugs dataset (-2.5 kcal/mol)

as illustrated in Figure 2 of [128]). Lastly, to detect whether a method, in aggregate,

generates molecules with unlikely 3D conformations, a generated molecule’s energy

ratio is defined as in [112] to be the ratio of the molecule’s UFF-computed energy

[129] and the mean of 50 RDKit ETKDGv3-generated conformers [130] of the same

molecular graph. Note that, as discussed by [131], generated molecules with an en-

ergy ratio greater than 7 are considered to have highly unlikely 3D conformations.

Subsequently, Figure 4.5 reveals that the average energy ratio of GCDM’s large 3D

molecules is notably lower and more tightly bounded compared to GeoLDM, the

baseline SOTA method for this task, indicating that GCDM also generates more

energetically-stable 3D molecule conformations compared to prior methods.

4.3.4 Property-guided 3D molecule optimization - QM9

To evaluate whether molecular diffusion models can not only generate new 3D molecules

but can also optimize existing small molecules using molecular property guidance, we

adopt the QM9 dataset for the following experiment. First, we use an unconditional

GCDM model to generate 1,000 3D molecules using 10 time steps of time-scaled re-

verse diffusion (to leave such molecules in an unoptimized state), and then we provide

these molecules to a separate property-conditional diffusion model for optimization of

the molecules towards the conditional model’s respective property. This conditional

model accepts these 3D molecules as intermediate states for 100 and 250 time steps

of property-guided optimization of the molecules’ atom types and 3D coordinates.

Lastly, we repurpose our experimental setup from Section 4.3.2 to score these opti-

mized molecules using an ensemble of external property classifier models to evaluate
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(1) how much the optimized molecules’ predicted property values have been improved

for the respective property (first metric) and (2) whether and how much the optimized

molecules’ stability (as defined in Section 4.3.1) has been changed during optimization

(second metric).

Baselines. Baseline methods for this experiment include EDM [114] and GCDM,

where both methods use similar experimental setups for evaluation. Our baseline

methods also include property-specificity and molecule stability measures of the initial

(unconditional) 3D molecules to demonstrate how much molecular diffusion models

can modify or improve these existing 3D molecules in terms of how property-specific

and stable they are. As in Section 4.3.2, property specificity is measured in terms

of the corresponding property classifier’s MAE for a given molecule with a targeted

property value, reporting the mean and Student’s t-distribution 95% confidence in-

terval for each property MAE across an ensemble of three corresponding classifiers.

Molecular stability (i.e., Mol Stable (%)), here abbreviated at MS, is defined as in

Section 4.3.1.

Results. In this section, we quantitatively explore (in Figure 4.6) whether and

how much generative models can reduce the property-specific MAE and improve the

molecular stability of a batch of existing 3D molecules. In particular, Figure 4.6 show-

cases a practical finding: geometric diffusion models such as GCDM can effectively

be repurposed as 3D molecule optimization methods with minimal modifications, im-

proving both a molecule’s stability and property specificity. This finding empirically

supports the idea that molecular denoising diffusion models may be applied in the op-

timization stage of the typical drug discovery pipeline [132] to experiment with a wider

range of potential drug candidates (post-optimization) more quickly than previously

possible. Simultaneously, the baseline EDM method fails to consistently optimize

the stability and property specificity of existing 3D molecules, which suggests that

geometric methods such as GCDM are theoretically and empirically better suited for
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Figure 4.6: Comparison of GCDM with baseline methods for property-guided 3D
molecule optimization. The results are reported in terms of molecular stability (MS)
and the MAE for molecular property prediction by an ensemble of three EGNN
classifiers ϕc (each trained on the same QM9 subset using a distinct random seed)
yielding corresponding Student’s t-distribution 95% confidence intervals, with results
listed for EDM and GCDM-optimized samples as well as the molecule generation
baseline (”Initial Samples”). Note that x denotes a missing bar representing outlier
property MAEs greater than 50. Alternatively, tabular results are given in Table C.1
of the Supplementary Results of Appendix C.3.1.

such tasks. Notably, on average, with 100 time steps GCDM improves the stability

of the initial molecules by over 25% and their specificity for each molecular property

by over 27%, whereas for the properties it can optimize with 100 time steps, EDM

improves the stability of the molecules by 13% and their property specificity by 15%.

Lastly, it is worth noting that increasing the number of optimization time steps from

100 to 250 steps inconsistently leads to further improvements to molecules’ stability
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and property specificity, indicating that the optimization trajectory likely reaches a

local minimum around 100 time steps and hence rationalizes reducing the required

compute time for optimizing 1,000 molecules e.g., from 15 minutes (for 250 steps) to

5 minutes (for 100 steps).

4.3.5 Protein-conditional 3D molecule generation

To investigate whether geometry-complete methods can enhance the ability of molec-

ular diffusion models to generate 3D models within a given protein pocket (i.e., to

perform structure-based drug design (SBDD)), in this experiment, we adopt the stan-

dard Binding MOAD [133] and CrossDocked [134] datasets for training and evalua-

tion of GCDM-SBDD, our geometry-complete, diffusion generative model based on

GCPNet++ that extends the diffusion framework of [135] for protein pocket-aware

molecule generation. The Binding MOAD dataset consists of 100,000 high-quality

protein-ligand complexes for training and 130 proteins for testing, with a 30% se-

quence identity threshold being used to define this cross-validation split. Similarly,

the CrossDocked dataset contains 40,484 high-quality protein-ligand complexes split

between training (40,354) and test (100) partitions using proteins’ enzyme commission

numbers as described by [135].

Baselines. Baseline methods for this experiment include DiffSBDD-cond [135]

and DiffSBDD-joint [135]. We compare these methods to our proposed geometry-

complete protein-aware diffusion model, GCDM-SBDD, using metrics that assess

the properties, and thereby the quality, of each method’s generated molecules. These

molecule-averaged metrics include a method’s average Vina score (computed using

QuickVina 2.1) [136] as a physics-based estimate of a ligand’s estimated binding

affinity with a target protein, measured in units of kcal/mol (lower is better); average

drug likeliness QED [137] (computed using RDKit 2022.03.2); average synthesizability

[138] (computed using the procedure introduced by [139]) as an increasing measure

65



Dataset Method Vina (kcal/mol, ↓) QED (↑) SA (↑) Lipinski (↑) Diversity (↑) PB-Valid (%) (↑)

BM DiffSBDD-cond (Cα) −5.784± 0.03 0.433± 0.00 0.616± 0.00 4.719± 0.01 0.848± 0.00 16.6± 0.6 / 1.7± 0.2

DiffSBDD-joint (Cα) −5.882± 0.05 0.474± 0.00 0.631± 0.00 4.835± 0.01 0.852± 0.00 10.7± 0.5 / 0.7± 0.1

GCDM-SBDD-cond (Cα) (Ours) -6.250± 0.03 0.465± 0.00 0.618± 0.00 4.661± 0.01 0.806± 0.00 40.8± 0.8 / 6.8± 0.4

GCDM-SBDD-joint (Cα) (Ours) −6.159± 0.06 0.459± 0.00 0.584± 0.00 4.609± 0.02 0.794± 0.00 37.3± 0.8 / 2.0± 0.2

Reference −8.328± 0.04 0.602± 0.00 0.336± 0.00 4.838± 0.01 – –

CD DiffSBDD-cond (Cα) −5.540± 0.03 0.449± 0.00 0.636± 0.00 4.735± 0.01 0.818± 0.00 40.7± 1.0 / 12.4± 0.6

DiffSBDD-joint (Cα) −5.735± 0.05 0.420± 0.00 0.662± 0.00 4.859± 0.01 0.890± 0.00 34.1± 0.9 / 6.2± 0.5

GCDM-SBDD-cond (Cα) (Ours) -5.955± 0.04 0.457± 0.00 0.640± 0.00 4.758± 0.02 0.795± 0.00 38.1± 1.0 / 15.7± 0.7

GCDM-SBDD-joint (Cα) (Ours) −5.870± 0.03 0.458± 0.00 0.631± 0.00 4.701± 0.02 0.810± 0.00 46.8± 1.0 / 6.5± 0.5

Reference −6.871± 0.04 0.476± 0.00 0.728± 0.00 4.340± 0.00 – –

Table 4.4: Evaluation of generated molecules for target protein pockets from the
Binding MOAD (BM) and CrossDocked (CD) test datasets. Our proposed method,
GCDM-SBDD, achieves the best results for the metrics listed in bold and the
second-best results for the metrics underlined. For each metric, a method’s mean
and Student’s t-distribution 95% confidence error interval (±) is reported over 100
generated molecules for each test pocket. Additionally, the PB-Valid metric is defined
as the percentage of generated molecules that pass all docking-relevant structural and
chemical sanity checks proposed by [112], with the validity ratio to the left (right)
of each / denoting the percentage of valid molecules without (with) consideration of
protein-ligand steric clashes.

of the ease of synthesizing a given molecule (higher is better); on average how many

rules of Lipinski’s rule of five are satisfied by a ligand [140] (computed compositionally

using RDKit 2022.03.2); and average diversity in mean pairwise Tanimoto distances

[141, 142] (derived manually using fingerprints and Tanimoto similarities computed

by RDKit 2022.03.2). Following established conventions for 3D molecule generation

[114], the size of each ligand to generate was determined using the ligand size dis-

tribution of the respective training dataset. Note that, in this context, ”joint” and

”cond” configurations represent generating a molecule for a protein target, respec-

tively, with and without also modifying the coordinates of the binding pocket within

the protein target. Also note that, similar to our experiments in Sections 4.3.1 - 4.3.4,

the GCDM-SBDD model uses 9 GCP message-passing layers along with 256 (64)

and 32 (16) invariant (equivariant) node and edge features, respectively.

Results. Table 4.4 shows that, across both of the standard SBDD datasets (i.e.,

Binding MOAD and CrossDocked), GCDM-SBDD generates more clash-free (PB-

Valid) and lower energy (Vina) molecules compared to prior methods. Moreover,
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Figure 4.7: GCDM-SBDD molecules generated for BM (a-b) and CD (c-d) test
proteins. Vina energy scores for these selected pocket-binding molecules range from
-8.2 (c) to -9.7 (b).

across all other metrics, GCDM-SBDD achieves comparable or better results in

terms of drug-likeness measures (e.g., QED) and comparable results for all other

molecule metrics without performing any hyperparameter tuning due to compute

constraints. These results suggest that GCDM, with GCPNet++ as its denois-

ing neural network, not only works well for de novo 3D molecule generation but

also protein target-specific 3D molecule generation, notably expanding the number of

real-world application areas of GCDM. Concretely, GCDM-SBDD improves upon

DiffSBDD’s average Vina energy scores by 8% on average across both datasets while

generating more than twice as many PB-valid ”candidate” molecules for the more

challenging Binding MOAD dataset.

As suggested by [112], the gap between the PB-Valid ratios in Table 4.4 without

and with protein-ligand steric clashes considered for both GCDM-SBDD and DiffS-

BDD suggests that deep learning-based drug design methods for targeted protein

pockets can likely benefit significantly from interaction-aware molecular dynamics re-

laxation following protein-conditional molecule generation, which may allow for many

generated ”candidate” molecules to have their PB validity ”recovered” by such relax-

ation. Nonetheless, Figure 4.7 demonstrates that GCDM can consistently generate

clash-free realistic and diverse 3D molecules with low Vina energies for unseen protein

targets.
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4.4 DISCUSSION

While previous methods for 3D molecule generation have possessed insufficient geo-

metric and molecular priors for scaling well to a variety of molecular datasets, in this

chapter, we introduced a geometry-complete diffusion model (GCDM) that estab-

lishes a clear performance advantage over previous methods, generating more realistic,

stable, valid, unique, and property-specific 3D molecules, while enabling the genera-

tion of many large 3D molecules that are energetically stable as well as chemically and

structurally valid. Moreover, GCDM does so without complex modeling techniques

such as latent diffusion, which suggests that GCDM’s results could likely be further

improved by expanding upon these techniques [122]. Although GCDM’s results here

are promising, since it (like previous methods) requires fully-connected graph atten-

tion as well as 1,000 time steps to generate a high-quality batch of 3D molecules,

using it to generate several thousand large molecules can take a notable amount of

time (e.g., 15 minutes to generate 250 new large molecules). As such, future research

with GCDM could involve adding new time-efficient graph construction or sampling

algorithms [143] or exploring the impact of higher-order (e.g., type-2 tensor) yet ef-

ficient geometric expressiveness [144] on 3D generative models to accelerate sample

generation and increase sample quality. Furthermore, integrating additional exter-

nal tools for assessing the quality and rationality of generated molecules [145] is a

promising direction for future work.

4.5 METHODS

4.5.1 Problem setting

In this work, our goal is to generate new 3D molecules either unconditionally or

conditioned on user-specified properties. We represent a molecular point cloud (e.g.,

3D molecule) as a fully-connected 3D graph G = (V , E) with V and E representing
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the graph’s sets of nodes and edges, respectively, and N = |V| and E = |E| rep-

resenting the numbers of nodes and edges in the graph, accordingly. In addition,

X = (x1,x2, ...,xN) ∈ RN×3 represents the respective Cartesian coordinates for each

node (i.e., atom). Each node in G is described by scalar features H ∈ RN×h and m

vector-valued features χ ∈ RN×(m×3). Likewise, each edge in G is described by scalar

features E ∈ RE×e and x vector-valued features ξ ∈ RE×(x×3). Then, letM = [X,H]

represent the molecules (i.e., atom coordinates and atom types) our method is tasked

with generating, where [·, ·] denotes the concatenation of two variables. Important to

note is that the input features H and E are invariant to 3D roto-translations, whereas

the input vector features X, χ and ξ are equivariant to 3D roto-translations. Lastly,

in particular, we design a denoising neural network Φ to be equivariant to 3D roto-

translations (i.e., SE(3)-equivariant) by defining it such that its internal operations

and outputs match corresponding 3D roto-translations acting upon its inputs.

4.5.2 Overview of GCDM

We will now introduce GCDM, a new Geometry-Complete SE(3)-Equivariant Diffu-

sion Model. GCDM defines a joint noising process on equivariant atom coordinates

x and invariant atom types h to produce a noisy representation z = [z(x), z(h)] and

then learns a generative denoising process using the newly-proposed GCPNet++

model (see the Supplementary Methods of Appendix C.1.1), which desirably contains

two distinct feature channels for scalar and vector features, respectively, and supports

geometry-complete and chirality-aware message-passing [146].

As an extension of the DDPM framework [147] outlined in the Supplementary

Methods of Appendix C.1.2, GCDM is designed to generate molecules in 3D while

maintaining SE(3) equivariance, in contrast to previous methods that generate molecules

solely in 1D [148], 2D [149], or 3D modalities without considering chirality [114, 103].

GCDM generates molecules by directly placing atoms in continuous 3D space and
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assigning them discrete types, which is accomplished by modeling forward and reverse

diffusion processes, respectively:

q(z1:T |z0)︸ ︷︷ ︸
Forward

=
T∏
t=1

q(zt|zt−1) pΦ(z0:T−1|zT )︸ ︷︷ ︸
Reverse

=
T∏
t=1

pΦ(zt−1|zt)

Overall, these processes describe a latent variable model pΦ(z0) =
∫
pΦ(z0:T )dz1:T

given a sequence of latent variables z0, z1, . . . , zT matching the dimensionality of the

dataM∼ p(z0). As illustrated in Figure 4.1, the forward process (directed from right

to left) iteratively adds noise to an input, and the learned reverse process (directed

from left to right) iteratively denoises a noisy input to generate new examples from

the original data distribution. We will now proceed to formulate GCDM’s joint

diffusion process and its remaining practical details.

4.5.3 Joint molecular diffusion

Recall that our model’s molecular graph inputs, G, associate with each node a 3D

position xi ∈ R3 and a feature vector hi ∈ Rh. By way of adding random noise to

these model inputs at each time step t via a fixed, Markov chain variance schedule

σ2
1, σ

2
2, . . . , σ

2
T , we can define a joint molecular diffusion process for equivariant atom

coordinates x and invariant atom types h as the product of two distributions [114]:

q(zt|zt−1) = Nxh(zt|αtzt−1, σ
2
t I). (4.1)

where Nxh serves as concise notation to denote the product of two normal distribu-

tions; the first distribution, Nx, represents the noised node coordinates; the second

distribution, Nh, represents the noised node features; and αt =
√

1− σ2
t following

the variance preserving process of [147]. With αt|s = αt/αs and σ2
t|s = σ2

t − αt|sσ
2
s for

any t > s, we can directly obtain the noisy data distribution q(zt|z0) at any time step
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t:

q(zt|z0) = Nxh(zt|αt|0z0, σ
2
t|0I). (4.2)

Bayes Theorem then tells us that if we then define µt→s(zt, z0) and σt→s as

µt→s(zt, z0) =
αsσ

2
t|s

σ2
t

z0 +
αt|sσ

2
s

σ2
t

zt and σt→s =
σt|sσs
σt

,

we have that the inverse of the noising process, the true denoising process, is given

by the posterior of the transitions conditioned on M ∼ z0, a process that is also

Gaussian [114]:

q(zs|zt, z0) = N (zs|µt→s(zt, z0), σ
2
t→sI). (4.3)

4.5.4 Parametrization of the reverse process

Noise parametrization. We now need to define the learned generative reverse

process that denoises pure noise into realistic examples from the original data dis-

tribution. Towards this end, we can directly use the noise posteriors q(zs|zt, z0)

of Eq. C.12 within the Supplementary Methods of Appendix C.1.2 after sampling

z0 ∼ (M = [x,h]). However, to do so, we must replace the input variables x and h

with the approximations x̂ and ĥ predicted by the denoising neural network Φ:

pΦ(zs|zt) = Nxh(zs|µΦt→s(zt, z̃0), σ
2
t→sI), (4.4)

where the values for z̃0 = [x̂, ĥ] depend on zt, t, and the denoising neural network

Φ. GCDM then parametrizes µΦt→s(zt, z̃0) to predict the noise ϵ̂ = [ϵ̂(x), ϵ̂(h)], which

represents the noise individually added to x̂ and ĥ. We can then use the predicted ϵ̂

to derive:

z̃0 = [x̂, ĥ] = zt/αt − ϵ̂t · σt/αt. (4.5)
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Invariant likelihood. Ideally, we desire for a 3D molecular diffusion model to

assign the same likelihood to a generated molecule even after arbitrarily rotating

or translating it in 3D space. To ensure the model achieves this desirable property

for pΦ(z0), we can leverage the insight that an invariant distribution composed of

an equivariant transition function yields an invariant distribution [116, 103, 114].

Moreover, to address the translation invariance issue raised by [116] in the context

of handling a distribution over 3D coordinates, we adopt the zero center of gravity

trick proposed by [103] to define Nx as a normal distribution on the subspace defined

by
∑

i xi = 0. In contrast, to handle node features hi that are invariant to roto-

translations, we can instead use a conventional normal distribution N . As such, if

we parametrize the transition function pΦ using an SE(3)-equivariant neural network

after using the zero center of gravity trick of [103], the model will have achieved the

desired likelihood invariance property.

4.5.5 Geometry-complete denoising network

Crucially, to satisfy the desired likelihood invariance property described in Section

4.5.4 while optimizing for model expressivity and runtime, GCDM parametrizes the

denoising neural network Φ using GCPNet++, an enhanced version of the SE(3)-

equivariant GCPNet algorithm [146], that we propose in the Supplementary Meth-

ods of Appendix C.1.1. Notably, GCPNet++ learns both scalar (invariant) and

vector (equivariant) node and edge features through a chirality-sensitive graph mes-

sage passing procedure, which enables GCDM to denoise its noisy molecular graph

inputs using not only noisy scalar features but also noisy vector features that are de-

rived directly from the noisy node coordinates z(x) (i.e., ψ(z(x))). We empirically find

that incorporating such noisy vectors considerably increases GCDM’s representation

capacity for 3D graph denoising.

72



4.5.6 Optimization objective

Following previous works on diffusion models [147, 114, 121], the noise parametriza-

tion chosen for GCDM yields the following model training objective:

Lt = Eϵt∼Nxh(0,1)

[
1

2
w(t)∥ϵt − ϵ̂t∥2

]
, (4.6)

where ϵ̂t is the denoising network’s noise prediction for atom types and coordinates

as described above and where we empirically choose to set w(t) = 1 for the best

possible generation results. Additionally, GCDM permits a negative log-likelihood

computation using the same optimization terms as [114], for which we refer interested

readers to the Supplementary Methods of Appendices C.1.2, C.1.2, and C.1.2.
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Chapter 5

GEOMETRIC FLOWMATCHING FORGENERATIVE PRO-

TEIN-LIGAND DOCKING AND AFFINITY PREDICTION

Adapted from Alex Morehead and Jianlin Cheng. ”FlowDock: Geometric Flow

Matching for Generative Protein-Ligand Docking and Affinity Prediction”.

Intelligent Systems for Molecular Biology & Bioinformatics (ISMB 2025).

5.1 ABSTRACT

Powerful generative AI models of protein-ligand structure have recently been pro-

posed, but few of these methods support both flexible protein-ligand docking and

affinity estimation. Of those that do, none can directly model multiple binding lig-

ands concurrently or have been rigorously benchmarked on pharmacologically rel-

evant drug targets, hindering their widespread adoption in drug discovery efforts.

In this chapter, we propose FlowDock, the first deep geometric generative model

based on conditional flow matching that learns to directly map unbound (apo) struc-

tures to their bound (holo) counterparts for an arbitrary number of binding lig-

ands. Furthermore, FlowDock provides predicted structural confidence scores and

binding affinity values with each of its generated protein-ligand complex structures,

enabling fast virtual screening of new (multi-ligand) drug targets. For the well-

known PoseBusters Benchmark dataset, FlowDock outperforms single-sequence

AlphaFold 3 with a 51% blind docking success rate using unbound (apo) protein
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input structures and without any information derived from multiple sequence align-

ments, and for the challenging new DockGen-E dataset, FlowDock outperforms

single-sequence AlphaFold 3 and matches single-sequence Chai-1 for binding pocket

generalization. Additionally, in the ligand category of the 16th community-wide Criti-

cal Assessment of Techniques for Structure Prediction (CASP16), FlowDock ranked

among the top-5 methods for pharmacological binding affinity estimation across 140

protein-ligand complexes, demonstrating the efficacy of its learned representations

in virtual screening. Source code, data, and pre-trained models are available at

https://github.com/BioinfoMachineLearning/FlowDock.

5.2 INTRODUCTION

Interactions between proteins and small molecules (ligands) drive many of life’s fun-

damental processes and, as such, are of great interest to biochemists, biologists, and

drug discoverers. Historically, elucidating the structure, and therefore the function, of

such interactions has required that considerable intellectual and financial resources be

dedicated to determining the interactions of a single biomolecular complex. For exam-

ple, techniques such as X-ray diffraction and cryo-electron microscopy have tradition-

ally been effective in biomolecular structure determination, however, resolving even

a single biomolecule’s crystal structure can be extremely time and resource-intensive.

Recently, new machine learning (ML) methods such as AlphaFold 3 (AF3) [27] have

been proposed for directly predicting the structure of an arbitrary biomolecule from

its primary sequence, offering the potential to expand our understanding of life’s

molecules and their implications in disease, energy research, and beyond.

Although powerful models of general biomolecular structure are compelling, they

currently do not provide one with an estimate of the binding affinity of a predicted

protein-ligand complex, which may indicate whether a pair of molecules truly bind

to each other in vivo. It is desirable to predict both the structure of a protein-
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ligand complex and the binding affinity between them via one single ML system [150].

Moreover, recent generative models of biomolecular structure are primarily based

on noise schedules following Gaussian diffusion model methodology which, albeit a

powerful modeling framework, lacks interpretability in the context of biological studies

of molecular interactions. In this work, we aim to address these concerns with a

new state-of-the-art hybrid (structure & affinity prediction) generative model called

FlowDock for flow matching-based protein-ligand structure prediction and binding

affinity estimation, which allows one to interpretably inspect the model’s structure

prediction trajectories to interrogate its common molecular interactions and to screen

drug candidates quickly using its predicted binding affinities.

5.2.1 Related work

Molecular docking with deep learning. Over the last few years, deep learning

(DL) algorithms (in particular geometric variants) have emerged as a popular method-

ology for performing end-to-end differentiable molecular docking. Models such as

EquiBind [108] and TankBind [151] initiated a wave of interest in researching graph-

based approaches to modeling protein-ligand interactions, leading to many follow-up

works. Important to note is that most of such DL-based docking models were de-

signed to supplement conventional modeling methods for protein-ligand docking such

as AutoDock Vina [152] which are traditionally slow and computationally expensive

to run for many protein-ligand complexes yet can achieve high accuracy with crystal

input structures and ground-truth binding pocket annotations.

Generative biomolecular modeling. The potential of generative modeling in cap-

turing intricate molecular details in structural biology such as protein-ligand interac-

tions during molecular docking [99] has recently become a research focus of ambitious

biomolecular modeling efforts such as AF3 [27], with several open-source spin-offs of

this algorithm emerging [153, 154].
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Flow matching. In the machine learning community, generative modeling with

flow matching [155, 156] has recently become an appealing generalization of diffusion

generative models [147, 157], enabling one to transport samples between arbitrary

distributions for compelling applications in computer vision [158], computational bi-

ology [159], and beyond. As a closely related concurrent work (as our method was

developed for the CASP16 competition starting in May 2024 [160]), [161] recently

introduced and evaluated an unbalanced flow matching procedure for pocket-based

flexible docking. However, the authors’ proposed approach mixes diffusion and flow

matching noise schedules with geometric product spaces in an unintuitive manner,

and neither source code nor data for this work are publicly available for benchmarking

comparisons. In Section 5.3.3, we describe flow matching in detail.

Contributions. In light of such prior works, our contributions in this manuscript

are as follows:

• We introduce the first simple yet state-of-the-art hybrid generative flow match-

ing model capable of quickly and accurately predicting protein-ligand complex

structures and their binding affinities, with source code and model weights freely

available.

• We rigorously validate our proposed methodology using standardized bench-

marking data for protein-ligand complexes, with our method ranking as a more

accurate and generalizable structure predictor than (single-sequence) AF3.

• Our method ranked as a top-5 binding affinity predictor for the 140 pharma-

ceutically relevant drug targets available in the 2024 community-wide CASP16

ligand prediction competition.

• We release one of the largest ML-ready datasets of apo-to-holo protein struc-

ture mappings based on high-accuracy predicted protein structures, which en-

ables training new models on comprehensive biological data for distributional
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Figure 5.1: An overview of biomolecular distribution modeling with FlowDock.

biomolecular structure modeling.

5.3 METHODS

The goal of this work is to jointly predict protein-ligand complex structures and their

binding affinities with minimal computational overhead to facilitate drug discovery.

In Sections 5.3.1 and 5.3.2, we briefly outline how FlowDock achieves this and how

its key notation is defined. We then describe FlowDock’s training and sampling

procedures in Sections 5.3.3-5.3.6.

5.3.1 Overview

Figure 5.1 illustrates how FlowDock uses geometric flow matching to predict flex-

ible protein-ligand structures and binding affinities. At a high level, FlowDock

accepts both (multi-chain) protein sequences and (multi-fragment) ligand SMILES

strings as its primary inputs, which it uses to predict an unbound (apo) state of the

protein sequences using ESMFold [25] and to sample from a harmonic ligand prior dis-

tribution [162] to initialize the ligand structures using biophysical constraints based

on their specified bond graphs. Notably, users can also specify the initial protein

structure using one produced by another bespoke method (e.g., AF3 which we use in
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certain experiments). With these initial structures representing the complex’s state at

time t = 0, FlowDock employs conditional flow matching to produce fast structure

generation trajectories. After running a small number of integration timesteps (e.g.,

40 in our experiments), the complex’s state arrives at time t = 1, i.e., the model’s

estimate of the bound (holo) protein-ligand heavy-atom structure. At this point,

FlowDock runs confidence and binding affinity heads to predict structural confi-

dence scores (i.e., plDDT) and binding affinities of the predicted complex structure,

to rank-order the model’s generated samples.

5.3.2 Notation

Let x0 denote the unbound (apo) state of a protein-ligand complex structure, rep-

resenting the heavy atoms of the protein and ligand structures as xP
0 ∈ RNP×3 and

xL
0 ∈ RNL×3, respectively, where NP and NL are the numbers of protein and lig-

and heavy atoms. Similarly, we denote the corresponding bound (holo) state of the

complex as x1. Further, let sP ∈ {1, . . . , 20}SP
denote the type of each amino acid

residue in the protein structure, where SP represents the protein’s sequence length.

To generate bound (holo) structures, we define a flow model vθ that integrates the

ordinary differential equation (ODE) it defines from time t = 0 to t = 1.

5.3.3 Riemannian manifolds and conditional flow matching

In manifold theory, an n-dimensional manifold M represents a topological space

equivalent to Rn. In the context of Riemannian manifold theory, each point x ∈ M

on a Riemannian manifold is associated with a tangent space Tx. Conveniently, a

Riemannian manifold is equipped with a metric gx : TxM×TxM→ R that permits

the definition of geometric quantities on the manifold such as distances and geodesics

(i.e., shortest paths between two points on the manifold). Subsequently, Riemannian

manifolds allow one to define on them probability densities
∫
M ρ(x)dx = 1 where ρ :
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M→ R+ are continuous, non-negative functions. Such probability densities give rise

to interpolative probability paths ρt : [0, 1]→ P(M) between probability distributions

ρ0, ρ1 ∈ P(M), where P(M) is defined as the space of probability distributions on

M and the interpolation in probability space between distributions is indexed by the

continuous parameter t.

Here, we refer to ψt : M → M as a flow on M. Such a flow serves as a solu-

tion to the ODE: d
dt
ψt(x) = ut(ψt(x)) [163] which allows one to push forward the

probability trajectory ρ0 → ρ1 to ρt using ψt as ρt = [ψt]#(ρ0), with ψ0(x) = x for

u : [0, 1]×M→M (i.e., a smooth time-dependent vector field [164]). This insight al-

lows one to perform flow matching (FM) [155] between ρ0 and ρ1 by learning a contin-

uous normalizing flow [165] to approximate the vector field ut with the parametric vθ.

With ρ0 = ρprior and ρ1 = ρdata, we have that ρt advantageously permits simulation-

free training. Although it is not possible to derive a closed form for ut (which gen-

erates ρt) with the traditional flow matching (FM) training objective, a conditional

flow matching (CFM) training objective remains tractable by marginalizing condi-

tional vector fields as ut(x) :=
∫
M ut(x|z)ρt(xt|z)q(z)

ρt(x)
dz, where q(z) represents one’s

chosen coupling distribution (by default the independent coupling q(z) = q(x0)q(x1))

between x0 and x1 via the conditioning variable z. For Riemannian CFM (RCFM)

[155], the corresponding training objective, with t ∼ U(0, 1), is:

LRCFM(θ) = Et,q(z),ρt(xt|z)∥vθ(xt, t)− ut(xt|z)∥2g, (5.1)

where [156] have fortuitously shown that the gradients of FM and CFM are identical.

As such, to transport samples of the prior distribution ρ0 to the target (data) distri-

bution ρ1, one can sample from ρ0 and use vθ to run the corresponding ODE forward

in time. In the remainder of this work, we will focus specifically on the 3-manifold

R3.
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5.3.4 Prior distributions

With flow matching defined, in this section, we describe how we use a bespoke mixture

of prior distributions (ρP0 and ρL0 ) to sample initial (unbound) protein and ligand

structures for binding (holo) structure generation targeting our data distribution of

crystal protein-ligand complex structures ρ1. In Section 5.4.1, we ablate this mixture

to understand its empirical strengths.

ESMFold protein prior. To our best knowledge, FlowDock is among the first

methods-concurrently with [161]-to explore using structure prediction models with

flow matching to represent the unbound state of an arbitrary protein sequence. In con-

trast to [161], we formally define a distribution of unbound (apo) protein structures us-

ing the single-sequence ESMFold model as ρP0 (xP
0 ) ∝ ESMFold(sP )+ϵ, ϵ ∼ N (0, σ),

which encourages our model to learn more than a strict mapping between protein

apo and holo point masses. Based on previous works developing protein generative

models [166], during training we apply ϵ ∼ N (0, σ = 1e−4) to both xP
0 and xP

1 to

discourage our model from overfitting to computational or experimental noise in its

training data. It is important to note that this additive noise for protein structures is

not a general substitute for generating a full conformational ensemble of each protein,

but to avoid the excessively high computational resource requirements of running pro-

tein dynamics methods such as AlphaFlow [162] for each protein, we empirically find

noised ESMFold structures to be a suitable surrogate.

Harmonic ligand prior. Inspired by the FlowSite model for multi-ligand bind-

ing site design [167], FlowDock samples initial ligand conformations using a har-

monic prior distribution constrained by the bond graph defined by one’s specified

ligand SMILES strings. This prior can be sampled as a modified Gaussian distribu-

tion via ρL0 (xL
0 ) ∝ exp(−1

2
xLT

0 LxL
0 ) where L denotes a ligand bond graph’s Laplacian

matrix defined as L = D −A, with A being the graph’s adjacency matrix and D

being its degree matrix. Similarly to our ESMFold protein prior, we subsequently
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apply ϵ ∼ N (0, σ = 1e−4) to xL
1 during training.

5.3.5 Training

We describe FlowDock’s structure parametrization, optimization procedure, and

the curation and composition of its new training dataset in the following sections.

Further, we provide training and inference pseudocode in the Supplementary Mate-

rials of Appendix D.1.

Parametrizing protein-ligand complexes with geometric flows. Based on

our experimental observations of the difficulty of scaling up intrinsic generative models

[168] that operate on geometric product spaces, FlowDock instead parametrizes 3D

protein-ligand complex structures as attributed geometric graphs [107] representing

the heavy atoms of each complex’s protein and ligand structures. The main benefit

of a heavy atom parametrization is that it can considerably simplify the optimization

of a flow model vθ by allowing one to define its primary loss function as simply as a

CondOT path [169, 162]:

LR3(θ) = Et,q(z),ρt(xt|z)∥vθ(xt, t)− x1)∥2, (5.2)

with the conditional probability path ρt chosen as

ρt(x|z) = ρt(x|x0,x1) = (1− t) · x0 + t · x1, x0 ∼ ρ0(x0) (5.3)

The challenge introduced by this atomic parametrization is that it necessitates the

development of an efficient neural architecture that can scalably process all-atom in-

put structures without the exhaustive computational overhead of generative models

such as AF3. Fortunately, one such architecture satisfies this requirement, namely,

one recently introduced by [29] with the NeuralPLexer model which encodes protein

language model (PLM) sequence embeddings and ligand SMILES strings to itera-
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tively decode block diagonal contact maps to condition a flow ODE for equivariant

coordinates and auxiliary predictions. As such, inspired by how the AlphaFlow model

was fine-tuned from the base AlphaFold 2 (AF2) architecture using flow matching,

to train FlowDock we explored fine-tuning the NeuralPLexer architecture to rep-

resent our vector field estimate vθ as illustrated in Figure 5.1. Uniquely, we em-

pirically found this idea to work best by fine-tuning the architecture’s score head,

which was originally trained with a denoising score matching objective for diffusion-

based structure sampling, instead using Eqs. 5.2 and 5.3. Moreover, we fine-tune all

of NeuralPLexer’s remaining intermediate weights and prediction heads including a

dedicated confidence head redesigned to predict binding affinities, with the exception

of its original confidence head which remains frozen at all points during training.

PDBBind-E Data Curation. To train FlowDock with resolved protein-

ligand structures and binding affinities, we prepared PDBBind-E, an enhanced version

of the PDBBind 2020-based training dataset proposed by [170] for training recent DL

docking methods such as DiffDock-L. To curate PDBBind-E, we collected 17,743 crys-

tal complex structures contained in the PDBBind 2020 dataset and 47,183 structures

of the Binding MOAD [133] dataset splits introduced by [170] (n.b., which maintain

the validity of our benchmarking results in Section 5.4 according to time and ligand-

based similarity cutoffs) and predicted the structure of these (multi-chain) protein

sequences in each dataset split using ESMFold. To optimally align each predicted

protein structure with its corresponding crystal structure, we performed a weighted

structural alignment optimizing for the distances of the predicted protein residues’

Cα atoms to the crystal heavy atom positions of the complex’s binding ligand, sim-

ilar to [170]. After dropping complexes for which the crystal structure contained

protein sequence gaps caused by unresolved residues, the total number of PDBBind

and Binding MOAD predicted complex structures remaining was 17,743 and 46,567,

respectively.
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Generalized unbalanced flow matching. We empirically observed the chal-

lenges of naively training flexible docking models like FlowDock without any ad-

justments to the sampling of their training data. Accordingly, we concurrently devel-

oped a generalized version of unbalanced flow matching [161] by defining our coupling

distribution q(z) as

q(x0,x1) ∝ q0(x0)q1(x1)Ic(x0,x1)∈cA , (5.4)

where cA is defined as a set of apo-to-holo assessment filters measuring the structural

similarity of the unbound (apo) and bound (holo) protein structures (n.b., not simply

their binding pockets) in terms of their root mean square deviation (RMSD) and TM-

score [171] following optimal structural alignment (as used in constructing PDBBind-

E). Effectively, we sample independent examples from q0 and q1 and reject these

paired examples if c(x0,x1) < cATM
or c(x0,x1) ≥ cARMSD

(n.b., we use cATM
= 0.7

and cARMSD
= 5Å as well as other length-based criteria in our experiments, please see

our code for full details).

5.3.6 Sampling

By default, we apply i = 40 timesteps of an Euler solver to integrate FlowDock’s

learned ODE vθ forward in time for binding (holo) structure generation. Specifically,

to generate structures, we propose to integrate a Variance Diminishing ODE (VD-

ODE) that uses vθ as

xn+1 = clamp(
1− s
1− t

· η) · xn + clamp((1− 1− s
1− t

) · η) · vθ(xn, t), (5.5)

where n represents the current integer timestep, allowing us to define t = n
i

and

s = n+1
i

; η = 1.0 in our experiments; and clamp ensures both the LHS and RHS

of Eq. 5.5 are lower and upper bounded by 1e−6 and 1 − 1e−6, respectively. We

experimented with different values of η yet ultimately settled on 1.0 since this yielded
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FlowDock’s best performance for structure and affinity prediction. Intuitively, this

VD-ODE solver limits the high levels of variance present in the model’s predictions

vθ during early timesteps by sharply interpolating towards vθ in later timesteps.

5.4 RESULTS

5.4.1 PoseBench protein-ligand docking

PoseBusters Benchmark set. In Figures 5.2 and 5.3, we illustrate the performance

of each baseline method for protein-ligand docking and protein conformational modifi-

cation with the commonly-used PoseBusters Benchmark set [112], provided by version

0.6.0 of the PoseBench protein-ligand benchmarking suite [172], which consists of 308

distinct protein-ligand complexes released after 2020. It is important to note that

this benchmarking set can be considered a moderately difficult challenge for methods

trained on recent collections of data derived from the Protein Data Bank (PDB) [173]

such as PDBBind 2020 [174], as all of these 308 protein-ligand complexes are not con-

tained in the most common training splits of such PDB-based data collections [112]

(with the exception of AF3 which uses a cutoff date of September 30, 2021). More-

over, as described by [112], a subset of these complexes also have very low protein

sequence similarity to such training splits.

Figure 5.2 shows that FlowDock consistently improves over the original Neu-

ralPLexer model’s docking success rate in terms of its structural and chemical accu-

racy (as measured by the RMSD≤ 2Å & PB-Valid metric [112]) and inter-run stability

(as measured by the error bars listed). Notably, FlowDock achieves a 10% higher

docking success rate than NeuralPLexer without any structural energy minimization

driven by molecular dynamics software [175], and with energy minimization its dock-

ing success rate increases to 51%, outperforming single-sequence AF3 and achieving

second-best performance on this dataset compared to single-sequence Chai-1 [153].

Important to note is that Chai-1, like AF3, is a 10x larger model trained for one month
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Figure 5.2: Protein-ligand docking success rates of each baseline method on the Pose-
Busters Benchmark set (n=308). Error bars: 3 runs.

DynamicBind
(Binding Pocket

Conformation RMSDs)

NeuralPLexer
(Binding Pocket

Conformation RMSDs)

FlowDock
(Binding Pocket

Conformation RMSDs)

Figure 5.3: Comparison of each flexible docking method’s protein conformational
changes made for the PoseBusters Benchmark set (n=308).

using 128 NVIDIA A100 80GB GPUs on more than twice as much data in the PDB

deposited up to 2021, whereas FlowDock is trained using only 4 80GB H100 GPUs

for one week, representing a 32x reduction in GPU hours required for training. Addi-

tionally, FlowDock outperforms the hybrid flexible docking method DynamicBind

[28] by more than 16%, which is a comparable model in terms of its size, training,

and downstream capabilities for drug discovery. Our results with ablated versions

of FlowDock trained instead with a protein harmonic prior (FlowDock-HP) or

with affinity prediction frozen until a fine-tuning phase (FlowDock-AFT) highlight
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that the protein ESMFold prior the base FlowDock model employs has imbued it

with meaningful structural representations for accurate ligand binding structure pre-

diction that are robust to changes in the source method of FlowDock’s predicted

protein input structures (e.g., FlowDock-ESMFold vs. FlowDock-Chai-1 vs.

FlowDock-AF3), providing users with multiple structure prediction options (e.g.,

ESMFold for faster and commercially available prediction inputs).

A surprising finding illustrated in Figure 5.3 is that no method can consistently

improve the binding pocket RMSD of AF3’s initial protein structural conformations,

which contrasts with the results originally reported for flexible docking methods such

as DynamicBind which used structures predicted by AF2 [15] in its experiments.

From this figure, we observe that DynamicBind and NeuralPLexer both infrequently

modify AF3’s initial binding pocket structure, whereas FlowDock often modifies

the pocket structure during ligand binding. The former two methods occasionally

improve largely-correct initial pocket conformations by ∼1Å, whereas FlowDock

primarily does so for mostly-incorrect initial pockets.

Figure 5.4: Protein-ligand docking success rates of each baseline method on the
DockGen-E set (n=14). Error bars: 3 runs.

DockGen-E set. To assess the generalization capabilities of each baseline method,

in Figures 5.4 and 5.5, we report each method’s protein-ligand docking and protein
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Figure 5.5: Comparison of each flexible docking method’s protein conformational
changes made for the DockGen-E set (n=122).

conformational modification performance for the novel (i.e., naturally rare) protein

binding pockets found in the new DockGen-E dataset from PoseBench. Each of

DockGen-E’s protein-ligand complexes represents a distinct binding pocket that facil-

itates a unique biological function described by its associated ECOD domain identifier

[170]. As our results for the DockGen-E dataset show in Figure 5.4, most DL-based

docking or structure prediction methods have likely not been trained or overfitted

to these binding pockets, as this dataset’s best docking success rate achieved by any

method is approximately 33%, much lower than the 68% best docking success rate

achieved for the PoseBusters Benchmark set. We find further support for this phe-

nomenon in Figure 5.5, where we see that all DL-based flexible docking methods find

it challenging to avoid degrading the initial binding pocket state predicted by AF3

yet all methods can restore a handful of AF3 binding pockets to their bound (holo)

form. This suggests that all DL methods (some more so than others) struggle to gen-

eralize to novel binding pockets, yet FlowDock achieves top performance in this

regard by tying with single-sequence Chai-1. Further, to address this generalization

issue, our preliminary results fine-tuning FlowDock for 48 hours using the new,

diverse PLINDER [176] dataset (i.e., FlowDock-PFT), where we use the dataset’s
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Table 5.1: Computational resource requirements. The average structure pre-
diction runtime (in seconds) and peak memory usage (in GB) of baseline methods on
a 25% subset of the Astex Diverse dataset [177] using an NVIDIA 80GB A100 GPU
for benchmarking (with baselines taken from [172]). The symbol - denotes a result
that could not be estimated.

Method Runtime (s) CPU Memory Usage (GB) GPU Memory Usage (GB)

P2Rank-Vina 1,283.70 9.62 0.00

DiffDock-L 88.33 8.99 70.42

DynamicBind 146.99 5.26 18.91

RoseTTAFold-All-Atom 3,443.63 55.75 72.79

AF3 3,049.41 - -

AF3-Single-Seq 58.72 - -

Chai-1-Single-Seq 114.86 58.49 56.21

NeuralPLexer 29.10 11.19 31.00

FlowDock 39.34 11.98 25.61

crystal apo-to-holo mapped protein-ligand complex structures contained within its

default PL50 training split and deposited in the PDB before 2018, suggest that com-

prehensively training new DL methods on diverse protein-ligand binding structures

is a promising direction towards generalizable docking.

Computational resources. To formally measure the computational resources

required to run each baseline method, in Table 5.1 we list the average runtime (in

seconds) and peak CPU (GPU) memory usage (in GB) consumed by each method

when running them on a 25% subset of the Astex Diverse dataset [177] (baseline re-

sults taken from [172]). Here, we notably find that FlowDock provides the second

lowest computational runtime and GPU memory usage compared to all other DL

methods, enabling one to use commodity computing hardware to quickly screen new

drug candidates using combinations of FlowDock’s predicted heavy-atom struc-

tures, confidence scores, and binding affinities.
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Figure 5.6: Comparison of DynamicBind and FlowDock’s predicted structures
(w/o hydrogens) and crystal PDBBind test example 6I67.

Table 5.2: Binding affinity estimation using PDBBind test set. For all meth-
ods, binding affinities were predicted in one shot using the commonly-used 363 PDB-
Bind (ligand and time-split) test complexes (with splits and baselines from [28]).
Results for FlowDock are reported as the mean and standard error of measure-
ment (n = 3) of each metric over three independent runs. Note that, for historical
reasons, the results for each version of FlowDock were obtained using ESMFold
predicted protein input structures.

Method Pearson (↑) Spearman (↑) RMSE (↓) MAE (↓)
GIGN 0.286 0.318 1.736 1.330

TransformerCPI 0.470 0.480 1.643 1.317

MONN 0.545 0.535 1.371 1.103

TankBind 0.597 0.610 1.436 1.119

DynamicBind (One-Shot) 0.665 0.634 1.301 1.060

FlowDock-HP 0.577± 0.001 0.560± 0.001 1.516± 0.001 1.196± 0.002

FlowDock-AFT 0.663± 0.003 0.624± 0.003 1.392± 0.005 1.113± 0.003

FlowDock 0.705± 0.001 0.674± 0.002 1.363±0.003 1.067±0.003

5.4.2 PDBBind binding affinity estimation

In this section, we explore binding affinity estimation with FlowDock using the

PDBBind 2020 test dataset (n=363) originally curated by [108], with benchmark-

ing results shown in Table 5.2. Popular affinity prediction baselines listed in Table

5.2 such as TankBind [151] and DynamicBind [28] demonstrate that accurate affin-

ity estimations are possible using hybrid DL models of protein-ligand structures and

affinities. Here, we find that, as a hybrid deep generative model, FlowDock provides

the best Pearson and Spearman’s correlations compared to all other baselines includ-
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ing FlowDock-HP (a fully harmonic variant of FlowDock) and FlowDock-

AFT (an ESMFold prior variant trained first for structure prediction and then with

affinity fine-tuning) and produces compelling root mean squared error (RMSE) and

mean absolute error (MAE) rates compared to the previous state-of-the-art method

DynamicBind. Referencing Table 5.1, we further note that FlowDock’s average

computational runtime per protein-ligand complex is more than 3 times lower than

that of DynamicBind, demonstrating that FlowDock, to our best knowledge, is

currently the fastest binding affinity estimation method to match or exceed Dynam-

icBind’s level of accuracy for predicting binding affinities using the PDBBind 2020

dataset.

In Figure 5.6, we provide an illustrative example of a protein-ligand complex in the

PDBBind test set (6I67) for which FlowDock predicts notably more accurate com-

plex structural motions and binding affinity values than the hybrid DL method Dy-

namicBind, importantly recognizing that the right-most protein loop domain should

be moved further to the right to facilitate ligand binding (see the Supplementary

Materials of Appendix D.2 for an example of one of FlowDock’s interpretable

structure generation trajectories). One should note that, for historical reasons, our

experiments with this PDBBind-based test set employed protein structures predicted

by ESMFold (not AF3). In the next section, we explore an even more practical appli-

cation of FlowDock’s fast and accurate structure and binding affinity predictions

in the CASP16 ligand prediction competition.

5.4.3 CASP16 protein-ligand binding affinity prediction

In Figure 5.7, we illustrate the performance of each predictor group for blind protein-

ligand binding affinity prediction in the ligand category of the CASP16 competition

held in summer 2024, in which pharmaceutically relevant binding ligands were the pri-

mary focus of this competition. Notably, FlowDock is the only hybrid (structure &
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Figure 5.7: Protein-ligand binding affinity prediction rankings for the CASP16 ligand
prediction category (n=140).

affinity prediction) ML method represented among the top-5 predictors, demonstrat-

ing the robustness of its knowledge of protein-ligand interactions. Namely, all other

top prediction methods were trained specifically for binding affinity estimation as-

suming a predicted or crystal complex structure is provided. In contrast, in CASP16,

we demonstrated the potential of using FlowDock to predict both protein-ligand

structures and binding affinities and using its top-5 predicted structures’ structural

confidence scores to rank-order its top-5 binding affinity predictions (see the Sup-

plementary Materials of Appendices D.3 and D.4 for FlowDock’s e.g., CASP16

structure prediction results). Ranked 5th for binding affinity estimation, these re-

sults of the CASP16 competition demonstrate that this dual approach of predicting

protein-ligand structures and binding affinities with a single DL model (FlowDock)

yields compelling performance for virtual screening of pharmaceutically interesting

molecular compounds.
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5.5 DISCUSSION

In this chapter, we have presented FlowDock, a novel, state-of-the-art deep gener-

ative flow model for fast and accurate (hybrid) protein-ligand binding structure and

affinity prediction. Benchmarking results suggest that FlowDock achieves structure

prediction results better than single-sequence AF3 and comparable to single-sequence

Chai-1 and outperforms existing hybrid models like DynamicBind across a range of

binding ligands. Lastly, we have demonstrated the pharmaceutical virtual screen-

ing potential of FlowDock in the CASP16 ligand prediction competition, where it

achieved top-5 performance. Future work could include retraining the model on larger

and more diverse clusters of protein-ligand complexes, experimenting with new ODE

solvers, or scaling up its parameter count to see if it displays any scaling law behavior

for structure or affinity prediction. As a deep generative model for structural biology

made available under an MIT license, we believe FlowDock takes a notable step

forward towards fast, accurate, and broadly applicable modeling of protein-ligand

interactions.
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Chapter 6

DEEP LEARNING FOR PROTEIN-LIGAND DOCKING:

ARE WE THERE YET?

Adapted from Alex Morehead, Nabin Giri, Jian Liu, Pawan Neupane, and Jianlin

Cheng. ”Deep Learning for Protein-Ligand Docking: Are We There Yet?”. AI for

Science Workshop of the Forty-First International Conference on Machine Learning

(ICML 2024 AI4Science Spotlight).

6.1 ABSTRACT

The effects of ligand binding on protein structures and their in vivo functions carry

numerous implications for modern biomedical research and biotechnology develop-

ment efforts such as drug discovery. Although several deep learning (DL) meth-

ods and benchmarks designed for protein-ligand docking have recently been intro-

duced, to date no prior works have systematically studied the behavior of the latest

docking and structure prediction methods within the broadly applicable context of

(1) using predicted (apo) protein structures for docking (e.g., for applicability to

new proteins); (2) binding multiple (cofactor) ligands concurrently to a given tar-

get protein (e.g., for enzyme design); and (3) having no prior knowledge of bind-

ing pockets (e.g., for generalization to unknown pockets). To enable a deeper un-

derstanding of docking methods’ real-world utility, in this chapter, we introduce

PoseBench, the first comprehensive benchmark for broadly applicable protein-ligand
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docking. PoseBench enables researchers to rigorously and systematically evaluate

DL methods for apo-to-holo protein-ligand docking and protein-ligand structure pre-

diction using both primary ligand and multi-ligand benchmark datasets, the latter

of which we introduce for the first time to the DL community. Empirically, using

PoseBench, we find that (1) DL co-folding methods generally outperform compara-

ble conventional and DL docking baselines, yet popular methods such as AlphaFold

3 are still challenged by prediction targets with novel protein sequences; (2) cer-

tain DL co-folding methods are highly sensitive to their input multiple sequence

alignments, while others are not; and (3) DL methods struggle to strike a balance

between structural accuracy and chemical specificity when predicting novel or multi-

ligand protein targets. Code, data, tutorials, and benchmark results are available at

https://github.com/BioinfoMachineLearning/PoseBench.

6.2 INTRODUCTION

The field of drug discovery has long been challenged with a critical task: determining

the structure of ligand molecules in complex with proteins and other key biomolecules

[178]. As accurately identifying such complex structures (in particular multi-ligand

structures) can yield advanced insights into the binding dynamics and functional

characteristics (and thereby, the medicinal potential) of numerous protein complexes

in vivo, in recent years, significant resources have been spent developing new ex-

perimental and computational techniques for protein-ligand structure determination

[179]. Over the last decade, machine learning (ML) methods for structure prediction

have become indispensable components of modern structure determination at scale,

with AlphaFold 2 for protein structure prediction being a hallmark example [15, 180].

As the field has gradually begun to investigate whether proteins in complex with

other types of molecules can faithfully be modeled with ML (and particularly deep

learning (DL)) techniques [150, 145, 30], several new works in this direction have
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Figure 6.1: Overview of PoseBench, our comprehensive benchmark for broadly ap-
plicable DL modeling of primary and multi-ligand protein complex structures. Base-
line methods of the benchmark include a range of the latest DL docking and co-folding
methods, both open-source and commercially restrictive, as well as conventional algo-
rithms for docking. Key observations derived using PoseBench include the disconti-
nuity between structure and interaction modeling performance for novel or uncommon
prediction targets and the heavy reliance of key DL co-folding methods on MSA-based
input features to achieve high structural accuracy.

suggested the promising potential of such approaches to protein-ligand structure de-

termination [99, 28, 29, 27]. Nonetheless, it remains to be shown the extent to which

the latest of such DL methods can adequately generalize to the context of binding

novel or uncommon protein-ligand interaction (PLI) pockets and multiple interacting

ligand molecules (e.g., which can alter the chemical functions of various enzymes) as

well as whether such methods can faithfully model amino acid-specific types of PLIs

natively found in crystallized biomolecular structures.

To bridge this knowledge gap, our contributions in this work are as follows:

• We introduce the first unified benchmark for protein-ligand docking and struc-

ture prediction that evaluates the performance of several recent DL-based meth-

ods (e.g., AlphaFold 3, Chai-1) as well as conventional algorithms (e.g., AutoDock

Vina) for primary and multi -ligand docking, which suggests that DL co-folding

methods generally outperform conventional algorithms yet remain challenged

by novel or uncommon prediction targets.

96



• In contrast to several recent works using crystal protein structures for protein-

ligand docking [112, 181], the docking benchmark results we present in this

work are all within the context of standardized input multiple sequence align-

ments (MSAs) and high accuracy apo-like (i.e., AlphaFold 3-predicted) protein

structures without specifying known binding pockets, which notably enhances

the broad applicability of this study’s findings.

• Our newly proposed benchmark, PoseBench, enables specific insights into nec-

essary areas of future work for accurate and generalizable biomolecular structure

prediction, including that DL methods struggle to balance faithful modeling of

native PLI fingerprints (PLIFs) with structural accuracy during pose prediction

and that some DL co-folding methods are more dependent than others on the

availability of input MSAs.

• Our benchmark results also highlight the importance of including challeng-

ing (out-of-sequence-distribution) datasets when evaluating future DL methods

while measuring their ability to recapitulate amino acid-specific PLIFs with an

appropriate new metric that we introduce in this work.

6.2.1 Related work

Structure prediction of PLI complexes. The field of DL-driven protein-ligand

structure determination was largely sparked with the development of geometric deep

learning methods such as EquiBind [108] and TANKBind [151] for direct (i.e., regression-

based) prediction of bound ligand structures in protein complexes. Notably, these

predictive methods could estimate localized ligand structures in complex with multi-

ple protein chains as well as the associated complexes’ binding affinities. However, in

addition to their limited predictive accuracy, they have more recently been found to

frequently produce steric clashes between protein and ligand atoms, notably hindering
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their widespread adoption in modern drug discovery pipelines.

Protein-ligand structure prediction and docking. Shortly following the first

wave of predictive methods for protein-ligand structure determination, DL methods

such as DiffDock [99] demonstrated the utility of a new approach to this problem

by reframing protein-ligand docking as a generative modeling task, whereby multiple

ligand conformations can be generated for a particular protein target and rank-ordered

using a predicted confidence score [182]. This approach has inspired many follow-up

works offering alternative formulations of this generative approach to the problem

[183, 184, 185, 186, 187, 28, 188, 189, 29, 190, 191, 181, 30, 31, 167, 192, 193, 27, 153,

194], with some of such follow-up works also being capable of accurately modeling

protein flexibility upon ligand binding or predicting binding affinities to a high degree

of accuracy.

Benchmarking efforts for protein-ligand complexes. In response to the

large number of new methods that have been developed for protein-ligand structure

prediction, recent works have introduced several new datasets and metrics with which

to evaluate newly developed methods, with some of such benchmarking efforts focus-

ing on modeling single-ligand protein interactions [195, 112, 176, 196, 197, 198, 199]

and others specializing in the assessment of multi-ligand protein interactions [200].

One of the motivations for introducing PoseBench in this work is to bridge this gap

by systematically assessing a selection of the latest (pocket-blind) structure prediction

methods within both interaction regimes, using unbound (apo) protein structures with

docking methods and challenging DL co-folding methods to predict full bioassemblies

from primary sequences. As we will soon see, the benchmarking results in the fol-

lowing Section 6.3 demonstrate the relevance and utility of this comprehensive new

evaluation suite for the future of protein-ligand modeling.
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Figure 6.2: Astex Diverse primary ligand docking success rates (n=85).

6.3 RESULTS

In this section, we present PoseBench’s results for primary and multi-ligand protein-

ligand docking and structure prediction and discuss their implications for future work,

as succinctly illustrated in Figure 6.1. Note that across all experiments, for generative

methods, we report their performance metrics in terms of the mean and standard

deviation across three independent runs of each method to gain insights into their

inter-run stability and consistency. Key metrics include a method’s percentage of

structurally accurate ligand pose predictions with a (heavy atom centroid) root mean

square deviation (RMSD) less than 2 (1) Å (i.e., (c)RMSD ≤ 2 (1) Å); its percentage

of structurally accurate pose predictions that are also chemically valid according

to the PoseBusters software suite (i.e., RMSD ≤ 2 Å & PB-Valid), which can be

affected by the post-hoc application of structural relaxation driven by computationally

expensive molecular dynamics (MD) simulations [201] (i.e., with relaxation); and our

newly proposed Wasserstein matching score of its amino acid-specific predicted PLIFs

(PLIF-WM). We formally define these metrics in Section 6.5.4. For interested readers,

in Appendix E.3, we report the average runtime and memory usage of each baseline

method to determine which methods are the most efficient for real-world structure-
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based applications, and in Appendix E.7 we present supplementary results.

6.3.1 Astex Diverse results

Containing PLI structures deposited in the RCSB Protein Data Bank (PDB) [173]

up until 2007, most of the well-known Astex Diverse dataset’s structures [177] are

present in the training data of each baseline method, yet benchmarking results for

this dataset (n=85), shown in Figure 6.2, indicate that only DL co-folding methods

achieve higher structural and chemical accuracy rates (RMSD ≤ 2 Å & PB-Valid)

than the conventional docking baseline AutoDock Vina combined with P2Rank for

PLI binding site prediction to facilitate blind molecular docking. Interestingly, nearly

all baseline methods identify the correct PLI binding pocket approximately 90% of

the time, yet only the DL co-folding methods AlphaFold 3 (AF3) [27] and Chai-1

[153] achieve a reasonable balance between their rates of structural and chemical

accuracy and chemical specificity (PLIF-WM), with the single-sequence (i.e., MSA-

ablated) version of AF3 being a notable exception. These results suggest that DL co-

folding methods have learned the most comprehensive representations of this dataset’s

input sequences, yet only the performance of the DL co-folding method Chai-1 is

maintained without the availability of diverse input MSAs. One likely explanation

for this phenomenon is that Chai-1’s training primarily relied upon the availability of

amino acid sequence embeddings generated by the protein language model ESM2 [25]

in addition to features derived from input MSAs, which may have imbued the model

with rich MSA-independent representations for biomolecular structure prediction.

6.3.2 DockGen-E results

As visualized in Figure 6.3, results with our new DockGen-E dataset of biologically

relevant PLI complexes deposited in the PDB up to 2019 (n=122) demonstrate that

only the latest DL co-folding methods can locate a sizable fraction of structurally
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Figure 6.3: DockGen-E primary ligand docking success rates (n=122).

accurate PLI binding poses represented in this dataset. As such methods may have

previously seen these PLI structures in their respective training data, it is surprising

that even the latest AF3 model fails to identify a structurally and chemically accurate

pose for more than half of the dataset’s complexes. Further, for Chai-1 and AF3, their

single-sequence variants achieve slightly higher chemical specificity than their MSA-

based versions, which may indicate that for these methods MSA features obfuscate

primary sequence knowledge in favor of evolution-averaged (i.e., amino acid-generic)

representations. The overall lower range of PLIF-WM values achieved by each method

for this dataset further suggests the increased chemical modeling difficulty of this

dataset’s complexes compared to those presented by the Astex Diverse dataset. A

potential source of these difficulties is that each of this dataset’s complexes represents

a functionally distinct PLI binding pocket (as codified by ECOD domains [202], see

[181] for more details) compared to data deposited in the PDB before 2019. As such,

it is likely that AF3 and Chai-1 are “overfitted” to the most common types of PLI

structures in the PDB and may overlook several uncommon types of PLI binding

pockets present in nature.
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Figure 6.4: PoseBusters Benchmark primary ligand docking success rates
(n=130/308).

6.3.3 PoseBusters Benchmark results

With approximately half of its PLI structures deposited in the PDB after AF3’s

maximum-possible training data cutoff of September 30, 2021 (n=308 total, filtered

to n=130 for subsequent analyses), the PoseBusters Benchmark dataset’s results, pre-

sented in Figure 6.4, indicate once again that DL co-folding methods achieve top per-

formance compared to conventional and DL docking baseline methods. Nonetheless,

we observe an interesting phenomenon whereby Chai-1 strikes a balance of structural

and chemical accuracy and chemical specificity comparable to AF3 even without input

MSAs, potentially suggesting that Chai-1 achieves stronger sequence generalization

for this dataset than AF3. Moreover, with the single-sequence version of AF3, we

again observe significant degradations in its overall performance, whereas running

Chai-1 with input MSAs achieves higher chemical specificity at the cost of marginal

structural accuracy compared to running it in single-sequence mode. These obser-

vations highlight the importance in future work of carefully studying why and how

the training of biomolecular structure generative models can be influenced to varying

degrees by the availability and composition of diverse input MSAs.
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Figure 6.5: CASP15 multi-ligand docking success rates (n=13).

Figure 6.6: CASP15 single-ligand docking success rates (n=6).

6.3.4 CASP15 results

As a new dataset of novel and challenging PLI complexes on which no method has

been trained, the CASP15 dataset’s multi-ligand results (n=13), illustrated in Figure

6.5, indicate that most methods fail to adequately generalize to multi-ligand predic-

tion targets, yet AF3 stands out in this regard (only) when provided input MSAs. As

many of these CASP15 multi-ligand targets represent large, highly symmetric protein

complexes, it is likely that additional evolutionary information in the form of MSAs

has improved AF3’s ability to predict higher-order protein-protein interactions for
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Figure 6.7: Function annotations of the PLI complexes all methods mispredicted
(n=129).

these targets, yet interestingly its improved rate of structural accuracy comes at the

cost of its protein-ligand chemical specificity (in comparison to its single-sequence

results). For the CASP15 dataset’s single-ligand (i.e., primary ligand) results (n=6)

presented in Figure 6.6, this trend is subverted in that conventional docking and sim-

pler DL co-folding methods such as AutoDock Vina and NeuralPLexer outperform all

recent DL co-folding methods in modeling crystalized PLIFs while achieving compa-

rable rates of structural accuracy. Given the small size of the CASP15 dataset, it is

reasonable to conclude that DL methods, in particular the latest co-folding methods,

may be challenged to predict PLI complexes containing novel PLIs mediated by novel

protein sequences. In the following Section 6.3.5, we will explore this latter point in

greater detail by analyzing the protein sequence similarities between common PDB

training data and this benchmark’s evaluation datasets.
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Figure 6.8: Function annotations of the PLI complexes AF3 mispredicted (n=171).

6.3.5 Exploratory analyses of results

In this section, we explore a range of questions to study the common “failure” modes

of the baseline methods included in this work, to outline new directions for future

research and development efforts in drug discovery.

Research Question 1: What are the most common types of protein-ligand

complexes that all baseline methods fail to predict?

→ To address this query, we first collect all ligand pose predictions that no method

could predict with structural and chemical accuracy (according to the metric RMSD

≤ 2 Å & PB-Valid). For each of these “failed” ligand poses, we retrieve the PDB’s

functional annotation of the protein in complex with this ligand and construct a his-

togram to visualize the frequency of these (failed complex) annotations. The results

of this analysis are presented in Figure 6.7, in which we see that metal transport
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proteins, flavoproteins, biosynthetic proteins, RNA binding proteins, immune system

proteins, and oxidoreductases are commonly mispredicted by all baseline methods

such as Chai-1 and RoseTTAFold-All-Atom (RFAA) [30], suggesting these classes of

proteins may be largely unaddressed by the most recent DL methods for PLI structure

prediction. To illuminate potential future research directions, in the next analysis, we

investigate whether this pattern persists specifically for one of the latest DL co-folding

methods, AF3.

Research Question 2: What are the most common types of protein-ligand

complexes that DL co-folding methods such as AF3 fail to predict?

→ For this follow-up question, we link all of AF3’s failed ligand predictions with

corresponding protein function annotations available in the PDB to understand which

types of PLI complexes AF3 finds the most difficult to predict. Similar to the answer

to our first research question, Figure 6.8 shows that, in order of difficulty, AF3 is

most challenged to produce ligand poses of high structural and chemical accuracy

for ligand-bound RNA binding proteins, immune system proteins, metal transport

proteins, biosynthetic proteins, flavoproteins, lyases, and oxidoreductases. As several

of these classes of proteins have not been well represented in the PDB over the last

50 years (e.g., immune system and biosynthetic proteins), in future work, it will be

important to ensure that either the performance of new DL methods for PLI struc-

ture prediction is expanded to support accurate modeling of these uncommon types

of ligand-bound proteins or a broadly applicable fine-tuning method for uncommon

types of interactions is proposed.

Research Question 3: How often is lack of sequence homology to PDB training

data associated with failed predictions by DL co-folding methods such as AF3?

→ To understand the impact of protein sequence similarity on the performance
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Figure 6.9: Sequence homologs of the unseen PLI complexes AF3 mispredicted
(n=62).

of the DL co-folding method AF3, we isolate the subset of failed ligand pose predic-

tions AF3 made for the PoseBusters Benchmark and CASP15 datasets, as none of

these datasets’ prediction targets are contained in AF3’s training dataset. We then

use MMseqs2 [203] to identify the deposition dates of the most similar (i.e., top hit)

protein chains with 30% or greater sequence homology to any protein chain in the

unseen PLI complexes AF3 failed to predict. Figure 6.9 reveals that most of the

unseen PLI complexes AF3 failed to predict were not associated with any protein

sequence homologs present in its PDB-based training dataset. That is, when AF3

failed to predict a new PLI complex, it also could not rely on sequence homology to its

training dataset to bolster its performance. This observation suggests that the perfor-

mance of recent DL co-folding methods for novel protein sequences or PLI complexes

may be limited by the extent to which the method can ”retrieve” similar sequence

representations from its training data. We conclude our quantitative analyses with

an illustration of the different failure modes of each baseline method, as depicted in

Figure 6.10.
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(a) Biosynthetics (RFAA) (b) Immune Proteins (AF3) (c) Novel Proteins (AF3)

Figure 6.10: Examples of baseline methods’ three failure modes discovered using
PoseBench.

6.4 DISCUSSION

In this chapter, we have introduced PoseBench, a unified, broadly applicable bench-

mark and toolkit for studying the performance of DL methods for protein-ligand dock-

ing and structure prediction. Benchmarking results with PoseBench suggest that

DL co-folding methods generally outperform conventional and DL docking baselines

yet remain challenged to predict protein targets containing novel sequences. Further,

we find that several DL methods face difficulties balancing the structural accuracy

of their predicted poses with the chemical specificity of their induced protein-ligand

interactions, highlighting that future methods may benefit from the introduction of

physico-chemical loss functions or sampling techniques to bridge this performance

gap. Lastly, we observe that some (but not all) DL co-folding methods are highly

dependent on the availability of diverse input MSAs to achieve high structural pre-

diction accuracy, underscoring the need in future work to elucidate the impact of the

availability of MSAs and protein language model embeddings on the training dynam-

ics of biomolecular structure prediction methods. As a publicly available resource,

PoseBench is flexible to accommodate new datasets and methods for protein-ligand

docking and structure prediction.
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Table 6.1: PoseBench evaluation datasets of protein-(multi-)ligand structures.

Name Type Source Size (Total # Ligands)

Astex Diverse Primary Ligand [177] 85

PoseBusters Benchmark Primary Ligand [112] 130/308

DockGen-E Primary Ligand 122

CASP15 Multi-Ligand 102 (across 19 complexes)

→ 6 (13) single (multi)-ligand complexes

6.5 METHODS

6.5.1 PoseBench

The overall goal of PoseBench, our newly designed benchmark for protein-ligand

docking and structure prediction, is to provide the research community with a central-

ized resource with which one can systematically measure, in a variety of macromolec-

ular contexts, the methodological advancements of new conventional and DL methods

proposed for this domain. In the following sections, we describe PoseBench’s design

and composition (as portrayed in Figure 6.1) and how we have used PoseBench to

evaluate several recent DL docking and co-folding methods (as well as a strong con-

ventional baseline algorithm) for protein-ligand structure modeling.

6.5.2 Benchmark datasets

As shown in Table 6.1, PoseBench provides users with broadly applicable, prepro-

cessed versions of four datasets with which to evaluate existing or new protein-ligand

structure prediction methods: Astex Diverse [177], PoseBusters Benchmark [112],

and the new DockGen-E and CASP15 PLI datasets that we have manually curated

in this work.

Astex Diverse dataset. The Astex Diverse dataset is a collection of 85 PLI

complexes composed of various drug-like molecules and cofactors known to be of

pharmaceutical or agrochemical interest, where a primary (representative) ligand is
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annotated for each complex. This dataset can be considered an easy benchmarking

dataset for methods trained on recent data contained in the PDB in that most of

its complexes (deposited in the PDB up to 2007) are known to overlap with the

commonly used PDBBind 2020 (time-split) training dataset [204, 108] containing

complexes deposited in the PDB before 2019. As such, including this dataset for

benchmarking allows one to estimate the breadth of a method’s structure prediction

capabilities for important primary ligand protein complexes represented in the PDB.

To perform unbound (apo) protein-ligand docking with this dataset, we used AF3

to predict the structure of each of its protein complexes, with all ligands and cofac-

tors excluded. We then optimally aligned these predicted protein structures to the

corresponding crystal (holo) PLI complex structures using a PLI binding site-focused

structural alignment performed using PyMOL [205], where each binding site is defined

as all amino acid residues containing crystallized heavy atoms that are within 10 Å of

any crystallized ligand heavy atom. To enable the broad availability of PoseBench’s

benchmark datasets in both commercial and academic settings, we also provide un-

bound (apo) protein structures predicted using the MIT-licensed ESMFold model [25],

although in Section 6.3 we report results using AF3’s predicted structures as the de-

fault data source. We further note that on average across all benchmark datasets and

methods, AF3’s predicted structures improve baseline docking methods’ structural

accuracy rates by 5-10%.

PoseBusters Benchmark dataset. Version 2 of the the popular PoseBusters

Benchmark dataset [112], which we adopt in this work, contains 308 recent primary

ligand protein complexes deposited in the PDB from 2019 onwards. Accordingly,

in contrast to Astex Diverse, this dataset can be considered a moderately difficult

benchmark dataset for baseline methods, since many of its complexes do not directly

overlap with the most commonly used PDB-based training data. Important to note is

that, among all baseline methods, AF3 used the most recent PDB training data cutoff
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of September 30, 2021, which motivated us to report the results in Section 6.3.3 for

only the subset of PoseBusters Benchmark complexes (n=130) deposited in the PDB

after this date. Like Astex Diverse, for the PoseBusters Benchmark dataset, we used

AF3 (and ESMFold) to predict the apo protein structures of each of its complexes

and then performed our PyMOL-based structural binding site alignments.

DockGen-E dataset. The original DockGen dataset [181] contains 189 diverse

primary ligand protein complexes, each representing a functionally distinct type of

PLI binding pocket according to ECOD domain partitioning [202, 181]. Consequently,

this dataset can be considered PoseBench’s most difficult primary ligand dataset

to model since its PLI binding sites are distinctly uncommon compared to those

frequently found in the training datasets of all baseline methods, though it is impor-

tant to note that these original DockGen complexes were deposited in the PDB from

2019 onward, making this benchmarking dataset partially overlap with the training

datasets of baseline DL co-folding methods such as AF3 and Chai-1. Nonetheless, in

line with our initial hypotheses, the benchmarking results in Section 6.3 demonstrate

that no baseline method can adequately predict the PLI binding sites and ligand

poses represented by this bespoke subset of the PDB, suggesting that all baseline

DL methods have yet to learn broadly applicable representations of protein-ligand

binding.

Unfortunately, the original DockGen dataset contains only the primary protein

chains representing each novel binding pocket after filtering out all non-interacting

chains and cofactors in a given biological assembly (bioassembly), which considerably

reduces the biophysical context provided to baseline methods to make reasonable

predictions. As such, we argue for the need to construct a new dataset that challenges

baseline methods (in particular DL co-folding methods) to predict full bioassemblies

containing novel PLI binding pockets, which we address with our enhanced version

of DockGen called DockGen-E.
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To construct DockGen-E, we collected the original DockGen dataset’s PLI bind-

ing pocket annotations for each complex. We then retrieved the corresponding first

bioassembly listed in the PDB to obtain each PDB entry’s biologically relevant com-

plex, filtering out DockGen complexes for which the first bioassembly could not be

mapped to its original PLI binding pocket annotation (which indicates these origi-

nal DockGen PLI binding pockets were initially not derived from the PDB’s corre-

sponding first bioassembly). This procedure left 122 biologically relevant assemblies

remaining for benchmarking. Like Astex Diverse and PoseBusters Benchmark, for

DockGen-E, we then used AF3 (and ESMFold) to predict the unbound (apo) pro-

tein structures of each complex in the dataset and structurally aligned the predicted

protein structures to their corresponding crystallized PLI binding sites using PyMOL.

CASP15 dataset. To assess the multi -primary ligand (i.e., multi-ligand) model-

ing capabilities of recent methods for protein-ligand docking and structure prediction,

with PoseBench, we introduce a preprocessed, DL-ready version of the CASP15 PLI

dataset debuted as a first-of-its-kind prediction category in the 15th Critical Assess-

ment of Techniques for Structure Prediction (CASP) competition held in 2022 [200].

The CASP15 PLI dataset is originally comprised of 23 protein-ligand complexes re-

leased in the PDB from 2022 onward, where we subsequently filter out 4 complexes

based on (1) whether the CASP organizers ultimately assessed predictions for the

complex and (2) whether they are nucleic acid-ligand complexes with no interacting

protein chains. The 19 remaining PLI complexes, which contain a total of 102 (frag-

ment) ligands, consist of a variety of ligand types including single-atom (metal) ions

and large drug-sized molecules with up to 92 atoms in each (fragment) ligand. As

such, this dataset is appropriate for assessing how well structure prediction methods

can model interactions between different (fragment) ligands in the same complex,

which can yield insights into the inter-ligand steric clash rates of each method. As

with all other benchmark datasets, we used AF3 (and ESMFold) to predict the un-
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bound (apo) structure of each protein complex in the dataset and then performed a

PyMOL-based structural alignment of the corresponding PLI binding sites.

PLI similarity analysis between datasets. For an investigation of the simi-

larity of PLIs represented in each dataset, in Appendix E.5, we analyze the different

types and frequencies of common, ProLIF-annotated protein-ligand binding pocket

interactions [206] natively found within the common PDBBind 2020 training dataset

and the Astex Diverse, PoseBusters Benchmark, DockGen-E, and CASP15 datasets,

respectively, to quantify the diversity of the (predicted) interactions each dataset can

be used to evaluate. In short, we find that the DockGen-E and CASP15 benchmark

datasets are the most dissimilar compared to the common PDBBind 2020 training

dataset, further illustrating the unique PLI modeling challenges offered by these eval-

uation datasets.

6.5.3 Formulated tasks

In this work, we developed PoseBench to focus our analysis on the behavior of

different conventional and DL methods for protein-ligand structure prediction in a

variety of macromolecular contexts (e.g., with or without inorganic cofactors present).

With this goal in mind, below we formalize the structure prediction tasks currently

available with PoseBench, with its source code flexibly designed to accommodate

new tasks in future work.

Primary ligand blind docking. For primary ligand blind docking, each baseline

method is provided with a complex’s (multi-chain) protein sequence and an optional

predicted (apo) protein structure as input along with its corresponding (fragment)

ligand SMILES strings, where fragment ligands include the primary binding ligand

to be scored as well as all cofactors present in the corresponding crystal structure. In

particular, no knowledge of the complex’s PLI binding pocket is provided to evalu-

ate how well each method can (1) identify the correct PLI binding pockets and (2)
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correct ligand poses within each pocket (3) with high chemical validity and (4) speci-

ficity for the pockets’ amino acid residues. After all fragment ligands are predicted,

PoseBench extracts each method’s prediction of the primary binding ligand and

reports evaluation results for these primary predictions.

Multi-ligand blind docking. For multi-ligand blind docking, each baseline

method is provided with a complex’s (multi-chain) protein sequence and an optional

predicted (apo) protein structure as input along with its corresponding (fragment)

ligand SMILES strings. As in primary ligand blind docking, no knowledge of the PLI

binding pockets is provided, which offers the opportunity to evaluate not only PLI

binding pocket and conformation prediction accuracy but, in the context of multi-

binding ligands, also inter-ligand steric clash rates.

6.5.4 Metrics

Traditional metrics. For PoseBench, we reference two key metrics in the field of

structural bioinformatics: the root-mean-square deviation (RMSD) and local Distance

Difference Test (lDDT) [207]. The RMSD between a predicted 3D conformation (with

atomic positions x̂i for each of the molecule’s n heavy atoms) and the ground-truth

(crystal structure) conformation (xi) is defined as:

RMSD =

√√√√ 1

n

n∑
i=1

∥x̂i − xi∥2. (6.1)

The lDDT score, which is commonly used to compare predicted and ground-truth

protein 3D structures, is defined as:

lDDT =
1

N

N∑
i=1

1

4

4∑
k=1

(
1

|Ni|
∑
j∈Ni

Θ(|d̂ij − dij| < ∆k)

)
, (6.2)

where N is the total number of heavy atoms in the ground-truth structure; Ni is

the set of neighboring atoms of atom i within the inclusion radius Ro = 15 Å in
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the ground-truth structure, excluding atoms from the same residue; d̂ij (dij) is the

distance between atoms i and j in the predicted (ground-truth) structure; ∆k are

the distance tolerance thresholds (i.e., 0.5 Å, 1 Å, 2 Å, and 4 Å); Θ(x) is a step

function that equals 1 if x is true, and 0 otherwise; and |Ni| is the number of neigh-

boring atoms for atom i. As originally proposed by [200], in this study, we adopt

the PLI-specific variant of lDDT for scoring multi -ligand complexes, which calculates

lDDT scores to compare predicted and ground-truth protein-(multi-)ligand complex

structures following optimal (chain-wise and residue-wise) structural alignment of the

predicted and ground-truth PLI binding pockets.

Lastly, we also measure the molecule validity rates of each predicted PLI complex

pose using the PoseBusters software suite (i.e., PB-Valid) [112]. This suite runs sev-

eral important chemical and structural sanity checks for each predicted pose including

energy ratio inspection and geometric (e.g., flat ring) assertions which provide a sec-

ondary filter of accurate poses that are also chemically and structurally meaningful.

New metrics. The RMSD, lDDT, and PB-Valid metrics of a protein-ligand

binding structure provide useful characterizations of how accurate and reasonable a

predicted pose is. However, a key limitation of these metrics is that they do not

measure how well a predicted pose resembles a native pose when comparing their

induced PLIFs. Recently, [196] introduced a complementary benchmarking metric,

PLIF-valid, assessing DL methods’ recovery rates of known PLIs. However, this met-

ric only reports a strict recall rate of each method’s interaction types rather than

a continuous measure of how well each method’s interactions match the distribution

of crystalized PLIs. Moreover, in drug discovery, a primary concern when designing

new drug candidates is ensuring they produce amino acid-specific types of interac-

tions (and not others), hence we desire each baseline method to recall the correct

types of PLIs for each pose and to avoid predicting (i.e., hallucinating) types of inter-

actions that are not natively present. Consequently, we argue that an ideal PLI-aware
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benchmarking metric is a single continuous metric that assesses the recall and preci-

sion of a method’s predicted distribution of amino acid-specific PLIFs. To this end,

we propose two new benchmarking metrics, PLIF-EMD and PLIF-WM.

For each PLI complex, PLIF-EMD measures the Earth mover’s distance (EMD)

[208] between a method’s predicted histogram of PLI type counts u (specific to each

type of interaction) and the corresponding native histogram v, where each histogram

of interaction type counts is represented as a 1D discrete distribution. Formally, this

equates to computing the Wasserstein distance between these two 1D distributions u

and v as

PLIF-EMD := l1(u, v) = inf
π∈Π(u,v)

∫
R×R
|x− y|dπ(x, y), (6.3)

where Π(u, v) denotes the set of distributions on R×R whose marginals, u and v, are

on the first and second factors, respectively. To penalize a baseline method for produc-

ing non-native interaction types, we unify the bins in each histogram before converting

them into 1D discrete representations. Namely, to perform this calculation, each PLI

is first represented as a fingerprint tuple of <ligand type, amino acid type, interaction

type> as determined by the software tool ProLIF [206] and then grouped to count

each type of tuple to form a histogram. As such, a lower PLIF-EMD value implies

a better continuous agreement between predicted and native interaction histograms.

PLIF-WM, derived from PLIF-EMD, assesses the Wasserstein matching (WM) score

of a pair of PLIF histograms. Specifically, to obtain a more benchmarking-friendly

score ranging from 0 to 1 (higher is better), we define PLIF-WM as

PLIF-WM := 1− PLIF-EMD− PLIF-EMDmin

PLIF-EMDmax − PLIF-EMDmin

, (6.4)

where PLIF-EMDmin and PLIF-EMDmax denote the minimum (best) and maximum

(worst) values of PLIF-EMD, respectively. As a metric normalized relative to each

collection of the latest baseline methods, PLIF-WM allows one to quickly identify
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which of the latest methods has the greatest capacity to produce realistic distributions

of PLIs. As a practical note, we use SciPy 1.15.1 [209] to provide users of PoseBench

with an optimized implementation of PLIF-EMD and thereby PLIF-WM.

6.5.5 Baseline methods and experimental setup

Overview. We designed PoseBench to answer specific modeling questions for PLI

complexes such as (1) which types of methods (if any) can predict both common

and uncommon PLI complexes with high structural and chemical accuracy and (2)

which most accurately predict multi-ligand structures without steric clashes? In the

following sections, we discuss which types of methods we evaluate in our benchmark

and how we evaluate each method’s predictions for PLI complex targets.

Method categories. As illustrated in Figure 6.1, to explore a range of the most

well-known or recent methods to date, we divide PoseBench’s baseline methods

into one of three categories: (1) conventional algorithms, (2) DL docking algorithms,

and (3) DL co-folding algorithms.

As a representative algorithm for conventional protein-ligand docking, we pair

AutoDock Vina (v1.2.5) [210] for molecular docking with P2Rank for protein-ligand

binding site prediction [211] to form a strong conventional (blind) docking baseline

(P2Rank-Vina) for comparison with DL methods. To represent DL docking methods,

we include DiffDock-L [181] for docking with static protein structures and Dynam-

icBind [28] for flexible docking. Lastly, to represent some of the latest DL co-folding

methods, we include NeuralPLexer [29], RFAA [30], AF3 [27], and Chai-1 [153]. For

interested readers, each method’s input and output data formats are described in

Appendix E.6.

Prediction and evaluation procedures. The PLI complex structures each

method predicts are subsequently evaluated using different structural and chemical

accuracy and molecule validity metrics depending on whether the targets are pri-
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mary or multi-ligand complexes. In Section 6.5.4, we provide formal definitions of

PoseBench’s evaluation metrics. Note that if a method’s prediction raises any errors

in subsequent scoring stages (e.g., due to missing entities or formatting violations),

the prediction is excluded from the evaluation.

Primary ligand evaluation. For primary ligand targets, we report each method’s

percentage of (top-1) ligand conformations within 2 Å of the corresponding crystal

ligand structure (RMSD ≤ 2 Å), using 1 Å to instead assess whether the predicted

ligand’s heavy atom centroid (i.e., binding pocket) was correct (cRMSD ≤ 1 Å), as

well as the percentage of such ”correct” ligand conformations that are also considered

to be chemically and structurally valid according to the PoseBusters software suite

[112] (RMSD ≤ 2 Å & PB-Valid). Importantly, as described in Section 6.5.4, we

also report each method’s new PLIF-WM scores to study the relationship between

its structural accuracy and chemical specificity.

Multi-ligand evaluation. Similar to the protein-ligand scoring procedure em-

ployed in the CASP15 competition [200], for multi-ligand targets, we report each

method’s (top-1) percentage of ”correct” (binding site-superimposed) ligand confor-

mations (RMSD ≤ 2 Å) as well as violin plots of the RMSD and PLI-specific lDDT

scores of its protein-ligand conformations across all (fragment) ligands within the

benchmark’s multi-ligand complexes (see Appendix E.7 for these plots). Notably,

this latter metric, referred to as lDDT-PLI, allows one to evaluate specifically how

well each method can model protein-ligand structural interfaces. Additionally, we

report each method’s PB-Valid rates (calculated once for each multi-ligand complex)

and PLIF-WM scores.
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Chapter 7

PROTEIN-LIGAND STRUCTURE AND AFFINITY PRE-

DICTION IN CASP16 USING AGEOMETRIC DEEP LEARN-

ING ENSEMBLE AND FLOW MATCHING

Adapted from Alex Morehead, Jian Liu, Pawan Neupane, Nabin Giri, and Jianlin

Cheng. ”Protein-ligand structure and affinity prediction in CASP16 using a

geometric deep learning ensemble and flow matching”. CASP16-invited issue of

Proteins: Structure, Function, and Bioinformatics (2025).

7.1 ABSTRACT

Predicting the structure of ligands bound to proteins is a foundational problem in

modern biotechnology and drug discovery, yet little is known about how to combine

the predictions of protein-ligand structure (poses) produced by the latest deep learn-

ing methods to identify the best poses and how to accurately estimate the binding

affinity between a protein target and a list of ligand candidates. Further, a blind

benchmarking and assessment of protein-ligand structure and binding affinity predic-

tion is necessary to ensure it generalizes well to new settings. Towards this end, in this

chapter, we introduce MULTICOM ligand, a deep learning-based protein-ligand

structure and binding affinity prediction ensemble featuring structural consensus

ranking for unsupervised pose ranking and a new deep generative flow matching model

for joint structure and binding affinity prediction. Notably, MULTICOM ligand
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Figure 7.1: A high-level overview of MULTICOM ligand, our proposed ensem-
bling method for protein-ligand structure and binding affinity prediction. Given the
sequence of a single- or multi-chain protein and the SMILES string of one or multi-
ple ligands, MULTICOM ligand predicts a number of plausible ligand poses using
a selection of the latest deep learning (DL) methods for protein-ligand modeling.
Such poses are then rank-ordered using an unsupervised structural consensus ranking
heuristic that biases towards the most structurally similar poses across all methods
and further filtered using a variety of structural and chemical sanity checks provided
by the PoseBusters software suite. Finally, the top-ranked poses are evaluated by our
new deep generative flow model FlowDock for joint assessment of protein-ligand
structure confidence scores and binding affinities.

ranked among the top-5 ligand prediction methods in both protein-ligand structure

prediction and binding affinity prediction in the 16th Critical Assessment of Tech-

niques for Structure Prediction (CASP16), demonstrating its efficacy and utility for

real-world drug discovery efforts. The source code for MULTICOM ligand is freely

available at https://github.com/BioinfoMachineLearning/MULTICOM_ligand.

7.2 INTRODUCTION

The effects of ligands binding to proteins are numerous and foundational to research

efforts in biotechnology and drug discovery, yet efficiently determining the structure,

and thereby the function, of such ligand-bound protein complexes has challenged

the structural biology community for decades. In the 15th Critical Assessment of

Techniques for Structure Prediction (CASP15) [200], template-based approaches to

protein-ligand structure determination generally outperformed those based on deep

learning (DL). Nonetheless, over the last few years, several new DL methods (mostly

diffusion models [212]) for protein-ligand docking and structure prediction have been
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introduced [213, 28, 170, 30, 29], importantly raising the question of which method(s)

perform(s) best for a range of diverse prediction targets and how to combine them

if they are complementary. We sought to answer this question by designing and

evaluating a new DL ensembling method called MULTICOM ligand for protein-

ligand modeling, which we will describe in detail in Section 7.3.

Our MULTICOM ligand team (group number 207) participating in the 2024

CASP16 experiment submitted 33 models for 13 incidental ligand pose targets; 1,165

models for 233 ligand pose pharma targets; 700 models for 140 ligand affinity pharma

targets; and 110 affinity predictions for 110 phase-2 ligand affinity pharma targets,

representing a submission for every protein target available in the CASP16 ligand

prediction category. To facilitate such a breadth of prediction types, we designed

MULTICOM ligand as a modular software framework for protein-ligand model-

ing. Originally developed as a DL benchmarking toolkit for protein-ligand docking

methods (i.e., PoseBench [172]), we adapted the core predictor modules of this bench-

marking pipeline to support the prediction of arbitrary protein-ligand structures with

associated confidence and affinity scores from protein sequence and ligand SMILES

string inputs.

Moreover, to provide high-accuracy estimates of a protein-ligand complex’s bind-

ing affinity from only primary sequences, we concurrently developed the new Flow-

Dock generative flow matching model for joint prediction of protein-ligand structure

and binding affinity [192]. Notably, our initial development of FlowDock revealed

that joint training and prediction of protein-ligand structure and binding affinity

yielded top results in various internal affinity prediction benchmarks we used for

model prototyping and evaluation. As such, in the CASP16 experiment, we inte-

grated FlowDock into MULTICOM ligand as an optional add-on of the frame-

work that, as one desires, can use initially provided protein-ligand complex structures

as additional model inputs for confidence and affinity estimation. This flexible soft-
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ware design greatly simplified our usage of MULTICOM ligand for Stage 2 of the

CASP16 binding affinity prediction category, in which predictors were given the crys-

tal structure of a protein-ligand complex and asked to estimate the complex’s binding

affinity using this additional information.

According to the CASP16 experiment’s official analysis, in the protein-ligand

structure prediction category, MULTICOM ligand ranked fifth with its predic-

tions’ median lDDT-PLI score of 0.58, which denotes a protein-ligand interaction

(PLI)-focused implementation of the local Distance Difference Test (lDDT) for as-

sessment of biomolecular structure accuracy. Further, in the protein-ligand binding

affinity prediction category, MULTICOM ligand achieved a Kendall’s Tau ranking

coefficient of 0.32 in Affinity Stage 1, earning it fifth place overall. Notably, MUL-

TICOM ligand performed better than many CASP16 template-based predictors,

demonstrating that deep learning has advanced the state of the art of protein-ligand

structure and binding affinity prediction since CASP15.

7.3 METHODS

7.3.1 Overview of approach

From primary sequence inputs of a protein and one or more ligands alone, MULTI-

COM ligand, visualized in Figure 7.1, provides users with rank-ordered predicted

protein-ligand complex conformations filtered using structural and chemical sanity

checks available in the PoseBusters software suite [112] and annotated with estimated

per-atom quality scores and binding affinity values produced by our new generative

flow matching model FlowDock. This approach is generally summarized in Algo-

rithm 2. The steps of the approach are described in detail in the following subsections.
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Algorithm 2 MULTICOM ligand for protein-ligand structure and affinity pre-
diction

Notation: (X: intermediate protein or protein-ligand structure; X̂: final protein-
ligand structure; B̂: binding affinity, Ĉ: confidence score)

1: Input: Protein sequence and ligand SMILES string (S,M)
2: Predict X init ← ESMFold(S)
3: Sample Xdd ← DiffDock-L(S,M,X init)
4: Sample Xdb ← DynamicBind(S,M,X init)
5: Sample Xnp ← NeuralPLexer(S,M,X init)
6: Predict Xrfaa ← RoseTTAFold-All-Atom(S,M)
7: Rank Xcon ← StructureConsensus(Xdd,db,np,rfaa)
8: Bust Xbust ← PoseBustersFilters(Xcon)
9: if Is Multi-Ligand then
10: Clash Bust Xbust ← ClashFilters(Xbust)

11: Finalize X̂, Ĉ, B̂ ← FlowDockAssess(S,M,Xbust)
12: Output: Sampled top-5 heavy-atom structures X̂ with confidence scores Ĉ and

binding affinities B̂

7.3.2 Protein-ligand inputs

MULTICOM ligand represents a protein-ligand complex as a pair of single-/multi-

chain protein sequence and SMILES string of one or more ligands (S,M). Multiple

chains within a protein sequence are delimited using the character ”:”, whereas multi-

ligand SMILES sequences within the same string are separated using the character

”.” following RDKit’s conventions for parsing ”fragment” ligands of a single molecule

[117]. Certain protein-ligand structure prediction methods employed in MULTI-

COM ligand support using predicted protein structures as input to enhance their

prediction accuracy. Accordingly, we use ESMFold [25] to provide predicted protein

structure inputs to these methods. Note that, during the CASP16 experiment, we

instead predicted these protein structures using AlphaFold 3 [27], though the pub-

lic release of MULTICOM ligand’s source code by default uses the MIT-licensed

ESMFold model for these purposes.
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7.3.3 Structure prediction methods

Based on the results of our previous benchmark of DL-based protein-ligand docking

methods [172], MULTICOM ligand employed four representative DL methods to

predict the structure for a protein-ligand sequence input: DiffDock-L [170], Dynam-

icBind [28], RoseTTAFold-All-Atom [30], and NeuralPLexer [29]. We then grouped

these methods into one of two groups, DL docking methods (i.e., DiffDock-L and

DynamicBind) and DL co-folding methods (i.e., RoseTTAFold-All-Atom and Neu-

ralPLexer), where the former group uses a predicted protein structure to perform

DL-based molecular docking and the latter group predicts full protein-ligand complex

conformations from primary sequence inputs. Lastly, we further subdivided these DL

docking and DL co-folding groups into protein-fixed/protein-flexible categories (i.e.,

DiffDock-L/DynamicBind) and predictive/generative categories (i.e., RoseTTAFold-

All-Atom/NeuralPLexer), respectively.

7.3.4 Ranking heuristics

One of the primary hypotheses driving this work is that geometrically similar ligand

poses predicted by different DL methods should largely coincide with an accurate

protein-ligand binding pocket and pose prediction overall. That is, when all DL

methods have predicted nearly the same binding pocket and ligand pose for a given

ligand molecule, they have, in essence, reached a ”structural consensus” on the lo-

cation and orientation of the crystal ligand pose. Based on this consensus (n.b.,

which may be misled if the majority of methods predict a similar incorrect binding

pocket), we formulate an unsupervised ranking metric that calculates the pairwise

root mean square deviation (RMSD) of all ligand poses predicted by each DL method

and rank-orders the poses according to their average pairwise RMSD to each other.

This provides a simple, computationally efficient heuristic (similar to that of [214]

for protein complex structure ranking) for selecting our ”best guess” of the location
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and orientation of a ligand pose given a pool of predictions produced by various DL

prediction methods.

7.3.5 Ligand pose filters

An important component of MULTICOM ligand’s design is that it not only cu-

rates a list of rank-ordered protein-ligand complex conformations produced by some

of the latest DL prediction methods but also re-ranks (i.e., down-weights) its top-5

predicted conformations if any prediction fails to pass each of the standardized struc-

tural and chemical validity tests available in the PoseBusters software suite [112]. This

provides an additional layer of filtering to ensure that MULTICOM ligand’s top

predictions are ordered according to a secondary heuristic that posits that accurate

ligand poses must not only be identified through a consensus of different prediction

methods but must also not contain any violations of known ligand biochemistry such

as non-planar ring conformations or steric clashes with protein heavy atoms.

7.3.6 Selected poses

During MULTICOM ligand’s initial stage of development, we discovered the need

to add another layer of pose ranking: the possibility of encountering multi-ligand

prediction targets for which accurate poses can be identified but may contain unde-

sirable (and unrealistic) inter-ligand steric clashes between ligand heavy atoms. No-

tably, this phenomenon frequently occurs with DL methods such as DiffDock-L and

DynamicBind which were originally trained on only single-ligand protein complexes,

necessitating a stopgap measure to prevent such (clashing) poses from being selected

as MULTICOM ligand’s top-ranked pose. Consequently, for multi-ligand predic-

tion targets, MULTICOM ligand automatically assigns predictions made by the

DL method NeuralPLexer (n.b., which was trained on multi-ligand protein complexes

with inter-ligand steric clash penalties) a higher rank than any other method’s predic-
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tions, to discourage (potentially) clashing poses produced by the other (single-ligand)

DL methods from being selected as MULTICOM ligand’s top pose prediction.

7.3.7 Confidence & affinity prediction

A final component of MULTICOM ligand’s design is its ability to annotate its

top-5 predicted protein-ligand structure conformations with estimated per-atom con-

fidence scores and per-ligand binding affinity values. This is made possible by our

new FlowDock generative model, a version of NeuralPLexer fine-tuned with geo-

metric flow matching for joint protein-ligand structure and binding affinity predic-

tion. Notably, the original NeuralPLexer model was trained as a denoising diffusion

probabilistic model [147, 215, 157, 212] that predicts protein(-multi)-ligand complex

structures and their confidence scores from primary sequence inputs, whereas Flow-

Dock generalizes NeuralPLexer’s diffusion generation framework with the emerging

generative modeling framework of conditional flow matching [216, 155, 159] to enable

generative (multi-ligand) structure predictions starting from biophysics-informed and

empirical prior distributions [162, 167, 193].

At a high level, flow matching (n.b., as a generalization of denoising diffusion) has

a DL model learn to solve an ordinary differential equation (ODE) that transforms

data points derived from an easy-to-sample prior distribution X0 (e.g., a Gaussian

distribution) to another empirical distribution X1 (e.g., the distribution of crystal

structures in the RCSB Protein Data Bank (PDB) [173]). A DL model learns a

solution to such an ODE by repeatedly ”denoising” an interpolative noising schedule

whereby, for a random time step t ∈ [0, 1] sampled during training, an input data

point x1 ∈ X1 (e.g., a 3D biomolecular crystal structure) is ”noised” according to

time step t typically using simple linear interpolation such as xt = (1− t) · x0 + t · x1,

and the model is then tasked with predicting the original version of this data point

x1. Once trained e.g., in the context of structure prediction, such a DL model can
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be run iteratively to sample multiple 3D biomolecular structures for a primary input

sequence starting from time step t = 0 representing a fully random point cloud

x0 ∈ X0. Note that additional (e.g., Gaussian) noise is typically injected into these

training and sampling processes to ensure the model produces more than a trivial

mapping between point masses [162].

Importantly, the primary novelty of flow matching is that one’s prior distribution

can be arbitrarily chosen, in contrast to denoising diffusion for which typically only

a Gaussian prior distribution can be used. This makes modeling of 3D biomolecules,

in particular, much more flexible in that, with flow matching, one can specify a prior

distribution informed by known biophysical properties such as a harmonic prior [162]

or one derived from the outputs of another DL structure prediction model such as

ESMFold [25]. As such, for a given protein sequence and ligand SMILES string,

FlowDock takes precise advantage of this modeling flexibility by sampling an ini-

tial protein structure using ESMFold and an initial molecule-like ligand conformation

from a harmonic prior distribution at the start of its structure prediction sampling

processes, which considerably reduces its training and prediction dynamics for arbi-

trary protein-ligand complexes.

In addition to introducing bespoke prior distributions for structure sampling,

FlowDock repurposes NeuralPLexer’s frozen (i.e., non-trainable) confidence esti-

mation module as an additional (trainable) binding affinity prediction module, which

was then fine-tuned for binding affinity estimation using the well-known PDBBind

2020 dataset [174, 108]. Overall, FlowDock’s model design provides a simple add-on

module within MULTICOM ligand to report (when requested) confidence scores

for (predicted) protein and ligand heavy atom coordinates and binding affinity values

for each ligand based on their (predicted) heavy atom coordinates (n.b., Pearson’s

correlation between the two: -0.127).
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Figure 7.2: The histogram of RMSD values of MULTICOM ligand’s top-ranked
(Model: 1) ligand models for the CASP16 protein-ligand structure prediction category
(n=233). MULTICOM ligand ranked 5th in this category.

7.4 RESULTS

The blind structure prediction benchmarking results of MULTICOM ligand in the

CASP16 experiment, as illustrated in Figure 7.2, demonstrate that our DL ensembling

approach to protein-ligand structure modeling (n.b., ranked fifth among 34 predic-

tor groups) reliably produces structurally accurate ligand-bound poses (∼2.5 average

(Model: 1) RMSD) of the diverse, pharmaceutically relevant protein complexes avail-

able in this experiment. Furthermore, Figures 7.3a and 7.3b (for Affinity Stages 1

and 2, respectively) illustrate that MULTICOM ligand’s predicted protein-ligand

binding affinities are modestly correlated (Pearson’s R values of 0.30 and 0.31, respec-

tively) with their ground-truth values (n.b., ranking fifth among 28 predictor groups),
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(a) MULTICOM ligand’s binding affinity correlation (Stage 1, n=140).

(b) MULTICOM ligand’s binding affinity correlation (Stage 2, n=110).

Figure 7.3: Summary of MULTICOM ligand’s CASP16 binding affinity prediction
performance: (a) Stage 1 correlation, and (b) Stage 2 correlation. MULTICOM -
ligand ranked fifth in this category.
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L1004

(a) RMSD=0.510

L1009

(b) RMSD=0.603

T1124

(c) RMSD=4.244

Figure 7.4: MULTICOM ligand’s top-ranked protein-ligand complex predictions
of three CASP16 ligand targets.

highlighting the real-world utility of our approach to estimating binding affinities for

virtual screening in drug discovery [217].

As Figures 7.2, 7.3a, and 7.3b showcase, many of MULTICOM ligand’s pose

and binding affinity predictions are highly accurate, yielding several predicted poses

with an RMSD less than 1 and estimated affinities nearly identical to their corre-

sponding true values. Nonetheless, in several other cases, MULTICOM ligand’s

pose predictions yielded RMSDs above 4, indicating in these cases our approach failed

to identify the correct protein-ligand binding pockets for DL-based docking. More-

over, the gaps between MULTICOM ligand’s predicted affinities and their true

counterparts were occasionally large, suggesting in these cases MULTICOM lig-

and was unsuccessful in differentiating weak from strong binding.

Like all other CASP16 ligand predictor groups, MULTICOM ligand’s affin-

ity predictions given crystal protein-ligand structures as additional inputs in Affinity

Stage 2 were not statistically significant in their differences to those of Stage 1 (Pear-

son’s R of 0.31 vs. 0.30), highlighting that, to make accurate binding affinity pre-

dictions, FlowDock’s representations derived from primary sequence inputs were

generally more useful to the model rather than additional structural context proved

to be. In the following subsections, we examine a subset of MULTICOM ligand’s

CASP16 pose predictions to study its relative strengths and weaknesses revealed by

the experiment.
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7.4.1 L1004

As one of the first pharma targets released to predictors for CASP16, ligand target

L1004 represents a globular protein with a well-defined binding pocket for molecular

docking. As such, the challenge presented by this target is largely in modeling the

most accurate pose of this novel ligand within the pocket rather than locating the

pocket itself. MULTICOM ligand’s top-ranked prediction for this target (Figure

7.4a) yielded a precise ligand RMSD of 0.510 and an lDDT-PLI of 0.963 (ranking 2nd

overall). Interestingly, MULTICOM ligand’s rank-3 prediction achieved an even

lower ligand RMSD of 0.483 (ranking 1st overall), suggesting that our structural

consensus ranking heuristic mislabeled our most accurate pose for this target yet still

ranked it among the ensemble’s top-5 predictions. The top prediction’s AlphaFold

3 protein structure for L1004 had a protein backbone RMSD (BB-RMSD) of 0.224,

highlighting that our DL ensemble methods each had access to a highly structurally

accurate (holo-like) protein structure for ligand docking or pose prediction for this

target, which contributed to their success in this case.

7.4.2 L1009

Due to the hierarchical naming structure of CASP16’s pharma ligand targets, target

L1009 contains the same binding pocket as target L1004 yet asks predictors to pro-

vide poses for a new and conformationally distinct ligand. MULTICOM ligand’s

top-ranked prediction for this target (Figure 7.4b) achieved a ligand RMSD of 0.603

and an lDDT-PLI of 0.950 (ranking 2nd overall), comparable to its predictions for

L1004 with high overall accuracy. Again of interest, MULTICOM ligand’s rank-2

prediction yielded even better results with a ligand RMSD of 0.525 (ranking 1st over-

all), further emphasizing the importance in future work of identifying efficient ways

of augmenting our structural consensus ranking heuristic (e.g., with FlowDock’s

predicted confidence scores).
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7.4.3 T1214

CASP16 incidental ligand target T1214 represents a beta barrel membrane protein

structure interacting with a single PQQ ligand molecule. Figure 7.4c shows MULTI-

COM ligand’s (failed) top-ranked prediction of this target, which achieved a modest

ligand heavy atom RMSD of 4.244 (n.b., 3.994 with the crystal protein structure) and

lDDT-PLI of 0.357 (ranking 34th overall). As our initial AlphaFold 3 prediction of

this target’s beta barrel protein structure yielded a reasonable BB-RMSD of 1.687

(n.b., compared to the BB-RMSD of 0.822 achieved by the top-ranking group for

this target), one possible explanation for the difficulties MULTICOM ligand faced

for this target is that membrane proteins constitute approximately only 5% of the

PDB’s composition [173]. Consequently, we posit that deep learning-based docking

methods trained on common subsets of the PDB such as PDBBind [174] are likely

to underperform for such targets, since their predictions are primarily optimized for

docking with more common types of (e.g., helical) proteins. This suggests that MUL-

TICOM ligand’s performance may be improved as new deep learning methods (in

particular co-folding methods) trained on more balanced mixtures of biomolecular

data are introduced.

7.5 DISCUSSION

In this chapter, we introduced MULTICOM ligand, a deep learning-based ensem-

bling method for protein-ligand structure prediction combined with flow matching

for joint structure and binding affinity prediction. Its blind assessment results in the

CASP16 experiment demonstrate its efficacy and utility for real-world drug discov-

ery efforts. Future work could include investigating whether FlowDock’s predicted

confidence scores could enhance the ranking performance of MULTICOM ligand’s

structural consensus heuristic and whether the latest DL co-folding methods such as
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AlphaFold 3 [27], Chai-1 [153], and NeuralPLexer 3 [194] may benefit from a DL en-

sembling approach like our new MULTICOM ligand method or if their predictions

may be augmented with additional rank-ordering and binding affinity estimations pro-

vided by lightweight generative models such as our new FlowDock model [192].
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Chapter 8

SUMMARY AND CONCLUDING REMARKS

8.1 CONTRIBUTIONS

This dissertation advances the modeling of 3D biomolecules with deep learning, span-

ning protein-protein interaction prediction, protein-binding small molecule genera-

tion, and docking pose estimation using geometric and generative methods. The

algorithms, datasets, and metrics introduced herein establish a foundation for a more

data-driven and learning-based approach to computational biology. Furthermore, this

work has catalyzed new research directions in line graph representation learning, ge-

ometric graph neural networks, generative modeling, and the empirical analysis of

geometric message passing expressivity. Collectively, these contributions have accel-

erated progress at the intersection of machine learning and computational biology.

8.2 FUTURE DIRECTIONS

Building on the findings of this dissertation, several promising research directions

emerge. These include all-atom biomolecular generative modeling, improved inference-

time scaling and search strategies for pre-trained biomolecular design models, and

scalable reward-guided inference of flow-based generative models. Advancing these

areas could have broad implications for frontier drug discovery, materials science, and

energy research.
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Chapter A

SUPPLEMENTARYMATERIALS FOR ”GEOMETRIC TRANS-

FORMERS FOR PROTEIN INTERFACE CONTACT PRE-

DICTION”

Adapted from Alex Morehead, Chen Chen, and Jianlin Cheng. ”Geometric

Transformers for Protein Interface Contact Prediction”. The Tenth International

Conference on Learning Representations (ICLR 2022).

A.1 SAMPLE INTERFACE CONTACT PREDICTIONS

In the first row of Figure A.1, we see predictions made by DeepInteract for a

homodimer complex from our test partition of DIPS-Plus (i.e., PDB ID: 4HEQ). The

leftmost image represents the softmax contact probability map. The center image

corresponds to the same contact map after having a 0.5 probability threshold applied

to it such that residue pairs with at least a 50% probability of being in interaction

with each other have their interaction probabilities rounded up to 1.0. The rightmost

image is the ground-truth contact map. Similarly, in the second row of Figure A.1,

we observe the cropped predictions made by DeepInteract for a CASP-CAPRI

test heterodimer (i.e., PDB ID: 6TRI).
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Figure A.1: DeepInteract’s softmax contact probabilities (leftmost column), 0.5
positive probability-thresholded predictions (middle column), and ground-truth labels
(rightmost column), respectively, for PDB ID: 4HEQ (first row) and 6TRI (second
row), two of the complexes in our test datasets.

A.2 TOP-k TEST PRECISION AND RECALL OF BOTH COMPLEX

TYPES IN DIPS-PLUS AND CASP-CAPRI

Formally, our definitions of a model’s top-k precision preck and recall reck, where

Tposk represents the number of true positive residue pairs selected from a model’s

top-k most probable pairs and Tpos corresponds to the total number of true positive

pairs in the complex, are

preck =
Tposk
k

(A.1)

and

reck =
Tposk
Tpos

. (A.2)

After defining top-k recall as such, in Tables A.1 and A.2 we provide the results

of each model’s top-k recall in the same set of experiments as given in the Results

section of Chapter 2.
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Table A.1: The average top-k recall on two types of DIPS-Plus test targets.

16 (Homo) 16 (Hetero)

Method R@L R@L/2 R@L/5 R@L R@L/2 R@L/5

BI 0.01 0 0 0.01 0.01 0.01

DH 0.07 0.04 0.02

CC 0.17 0.12 0.07

DI (GCN) 0.14 (0.03) 0.08 (0.01) 0.04 (0.01) 0.08 (0.02) 0.05 (0.02) 0.02 (0.01)

DI (GT) 0.17 (0.01) 0.10 (0.01) 0.05 (0.01) 0.09 (0.02) 0.05 (0.02) 0.03 (0.01)

DI (GeoT w/o EPE) 0.18 (0.02) 0.11 (0.01) 0.05 (0.01) 0.11 (0.03) 0.07 (0.02) 0.03 (0.02)

DI (GeoT w/o GFG) 0.19 (0.04) 0.11 (0.03) 0.05 (0.02) 0.09 (0.01) 0.05 (0.02) 0.03 (0.01)

DI (GeoT) 0.19 (0.004) 0.12 (0.004) 0.06 (0.003) 0.12 (0.003) 0.07 (0.01) 0.03 (0.01)

Table A.2: The average top-k recall on dimers from CASP-CAPRI 13 & 14.

14 (Homo) 5 (Hetero)

Method R@L R@L/2 R@L/5 R@L R@L/2 R@L/5

BI 0.02 0.01 0 0.01 0 0

DH 0.02 0.01 0

CC 0.03 0.01 0.01

DI (GCN) 0.10 (0.01) 0.07 (0.01) 0.04 (0.02) 0.08 (0.04) 0.04 (0.02) 0.02 (0.01)

DI (GT) 0.10 (0.01) 0.06 (0.01) 0.02 (0.01) 0.10 (0.01) 0.05 (0.01) 0.02 (0.01)

DI (GeoT w/o EPE) 0.11 (0.01) 0.07 (0.01) 0.04 (0.01) 0.12 (0.02) 0.07 (0.01) 0.03 (0.01)

DI (GeoT w/o GFG) 0.10 (0.02) 0.06 (0.01) 0.03 (0.01) 0.11 (0.02) 0.07 (0.01) 0.03 (0.01)

DI (GeoT) 0.12 (0.03) 0.07 (0.01) 0.04 (0.01) 0.15 (0.02) 0.09 (0.01) 0.04 (0.01)

A.3 DEFINITION OF EDGE GEOMETRIC FEATURES

Similar to [53], we construct a local reference frame (i.e., an orientation Oi) for each

protein chain graph’s residues. Representing each residue by its Cartesian coordinates

xi, we formally define

ui =
xi − xi−1

∥xi − xi−1∥
, ni =

ui × ui+1

∥ui × ui+1∥
, bi =

ui − ui+1

∥ui − ui+1∥
. (A.3)

with ni being the unit vector normal to the plane formed by the rays (xi−1 − xi)

and (xi+1 − xi) and bi being the negative bisector of this plane. We then define Oi

as
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Oi = [bi ni bi × ni]. (A.4)

Having defined the orientation Oi for each residue that describes the local reference

frame (xi, Oi). To provide the Geometric Transformer with an alternative

notion of residue-residue orientations, we define the unit vector normal to the amide

plane for residue i as

Ui = (xCαi
− xCβi)× (xCβi

− xNi
) (A.5)

where xCαi
, xCβi, and xNi are the Cartesian coordinates of the residue’s carbon-

alpha (Cα), carbon-beta (Cβ), and nitrogen (N) atoms, respectively.

Finally, we relate the reference frames for residues i and j by describing their edge

geometric features as

(
r(∥xj − xi∥), OT

i

xj − xi

∥xj − xi∥
, q(OT

i Oj), a(Ui,Uj)

)
(A.6)

with the first term r() being a distance encoding of 16 Gaussian radial basis

functions spaced isotropically from 0 to 20 Å, the second term describing the relative

direction of xj with respect to reference frame (xi,Oi), the third term detailing

an orientation encoding q() of the quaternion representation of the rotation matrix

OT
i Oj, representing each quaternion with respect to its vector of real coefficients, and

the fourth term a() representing the angle between the amide plane normal vectors

Ui and Uj.

Our definition of these edge geometric features makes use of the backbone atoms

for each residue. As such, the graph representation of protein chains we use with

the Geometric Transformer encodes not only residue-level geometric features

but also those derived from an atomic view of protein structures. We hypothesized

this hybrid approach to modeling protein structure geometries would have a notice-
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Table A.3: The protein complexes selected from DIPS-Plus for testing interface con-
tact predictors.

PDB ID Chain 1 Chain 2 Type PDB ID Chain 1 Chain 2 Type

1BHN B D Homo 1AON R S Hetero

1KPT A B Homo 1BE3 D E Hetero

1SDU A B Homo 1GK8 K M Hetero

1UZN A B Homo 1OCZ R V Hetero

2B4H A B Homo 1UWA A I Hetero

2G30 C E Homo 3A6N A E Hetero

2GLM E F Homo 3ABM D K Hetero

2IUO D J Homo 3JRM H I Hetero

3BXS A B Homo 3MG6 D E Hetero

3CT7 B E Homo 3MNN C F Hetero

3NUT A D Homo 3T1Y E H Hetero

3RE3 B C Homo 3TUY D E Hetero

4HEQ A B Homo 3VYG G H Hetero

4LIW A B Homo 4A3D C L Hetero

4OTA D F Homo 4CW7 G H Hetero

4TO9 B D Homo 4DR5 G I Hetero

able downstream effect on interface contact prediction precision via the node and

edge representations learned by the Geometric Transformer. This hypothesis is

confirmed in the Results section of Chapter 2.

A.4 PROTEIN COMPLEXES SELECTED FOR TESTING

To facilitate reproducibility of the results presented in the Results section of Chapter

2, Table A.3 displays the PDB and chain IDs of DIPS-Plus protein complexes chosen

for testing. Likewise, in Table A.4, we provide the PDB and chain IDs of CASP-

CAPRI 13-14 targets chosen for testing. These two tables describe precisely which

targets were selected and ultimately used in our RCSB-derived benchmarks. For full

data provenance, the targets we selected from the Docking Benchmark 5 dataset [41]
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Table A.4: The CASP-CAPRI 13-14 protein complexes selected for testing interface
contact predictors.

PDB ID Chain 1 Chain 2 Type

5W6L A B Homo

6D2V A B Homo

6E4B A B Homo

6FXA C D Homo

6HRH A B Homo

6MXV A B Homo

6N64 A B Homo

6N91 A B Homo

6NQ1 A B Homo

6QEK A B Homo

6UBL A B Homo

6UK5 A B Homo

6YA2 A B Homo

7CWP C D Homo

6CP8 A C Hetero

6D7Y A B Hetero

6TRI A B Hetero

6XOD A B Hetero

7M5F A C Hetero

for benchmarking are the same 55 protein heterodimers used for testing in works such

as those of [40], [42], and [35].

A.5 INVARIANCE OR EQUIVARIANCE?

In our view, a natural question to ask concerning a deep learning architecture de-

signed for a specific task is whether equivariance to translations and rotations in R3

should be preferred over invariance to transformations in such a geometric space.

The benefits of employing equivariant representations in a deep learning architecture

primarily include symmetry-preserving updates to type-1 tensors such as the coor-
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dinates representing an object in R3 and the derivation of invariant relative feature

poses for type-0 features such as scalars [218]. However, equivariant representations,

particularly those derived with a self-attention mechanism, can induce large memory

requirements for training and inference. In contrast, in the context of data domains

such as ordered sets or proteins where there exists a canonical ordering of points,

invariant representations may be adopted to simultaneously reduce memory require-

ments and provide many of the benefits of using equivariant representations such as

attaining these relative poses of type-0 features [53, 15]. As such, in the context of

the Geometric Transformer, we opted to pursue invariance over equivariance, to

reduce the network’s effective memory requirements while improving its learning effi-

ciency and generalization capabilities [26]. However, for applications such as protein-

protein docking that may more directly rely on type-1 tensors for network predictions

[47], designing one’s network architecture to preserve full translation and rotation

equivariance in R3 is, in our perspective, a worthwhile research direction to pursue as

many promising results on molecular datasets have already been demonstrated with

equivariant neural networks such as SE(3)-Transformers [219] and lightweight graph

architectures such as the Equivariant Graph Neural Network [18].

A.6 RATIONALE BEHIND THE NODE INITIALIZATION SCHEME

DIPS-Plus residue-level features are initially embedded in our protein chain graphs to

accelerate the network’s training. However, we also initially append node-wise min-

max positional encodings in our network’s operations. We do this to initialize the

Geometric Transformer with information concerning the residue ordering of the

chain’s underlying sequence, as such ordering is important to understanding down-

stream protein structural, interactional, and functional properties of each residue.
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A.7 RATIONALE BEHIND THE EDGE INITIALIZATIONMODULE’S

DESIGN

For the edge initializer module’s four protein geometric features, we sought to include

enough geometric information for the network to be able to uniquely determine the

Euclidean positions of each node’s neighboring nodes. For this reason, we adopt

similar distance, direction, and orientation descriptors as [53]. We concatenate the

protein backbone-geometric features provided by inter-residue distances, directions,

and orientations with the angles between each residue pair’s amide plane normal

vectors. This is done ultimately to apply gating to each edge’s messages, distances,

directions, orientations, and amide angles separately to encourage the network to

learn the importance of specific channels in each of these input features. Gating is a

technique that has previously been shown to encourage neural networks to not become

over-reliant on any particular input feature [220] and, as such, in the Geometric

Transformer can be seen as a form of channel-wise dropout for single feature

sets. By also employing residual connections from original edge representations to

gating-learned edge representations, the network module can operate more stably

in the presence of multiple neural network layers [221]. Furthermore, in the edge

initialization module, we introduce edge-wise sinusoidal position encodings to provide

the network with a directional notion of residue-to-residue distances in protein chains’

underlying sequences.

A.8 RATIONALE BEHIND THE CONFORMATION MODULE’S DE-

SIGN

The conformation module’s design was inspired, in part, by SphereNet [222] and sim-

ilar graph neural network architectures designed for learning on 3D graphs. What

distinguishes our conformation module from the works of others is its introduction of
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the notion of 2n edge geometric neighborhoods when updating edge representations

as well as its incorporation of geometric insights specific to large biomolecules such

as proteins. Namely, by including the residue-residue distances, residue-residue lo-

cal reference frame directions and (quaternion) orientations, and amide plane-amide

plane angles, the network is provided with enough information to ascertain the rel-

ative coordinates of each neighboring residue from a given residue’s local reference

frame [222], thereby ensuring the network’s capability of adequately learning from 3D

structures.

A.9 ALTERNATIVE NETWORKSWITHIN THE INTERACTIONMOD-

ULE

We, like [35], note that the task of interface prediction bears striking similarities to

dense prediction tasks in computer vision (e.g., semantic segmentation). In this train

of thought, we experimented with several semantic segmentation models as replace-

ments for our interaction module’s dilated ResNet, one namely being DeepLabV3Plus

[223]. We observed a strong propensity of such semantic segmentation models to iden-

tify interaction regions well but to do so with low pixel-wise precision. We hypothesize

this is due to the downsampling and upsampling methods often employed within such

architectures that invariably degrade the original input tensor’s representation res-

olution. We also experimented with several state-of-the-art Vision Transformer and

MLP-based models for computer vision but ultimately found their algorithmic com-

plexity, memory usage, or input shape requirements to be prohibitive for this task,

since our test datasets’ input protein complexes can vary greatly in size to contain

between 20 residues and over 2,000 residues in length. As such, for the design of

DeepInteract’s interaction module, we experimented primarily with convolution-

based architectures that do not employ such sampling techniques or pose limited

input size constraints.
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A.10 HARDWARE USED

The Oak Ridge Leadership Facility (OLCF) at the Oak Ridge National Laboratory

(ORNL) is an open science computing facility that supports HPC research. The

OLCF houses the Summit compute cluster. Summit, launched in 2018, delivers 8

times the computational performance of Titan’s 18,688 nodes, using only 4,608 nodes.

Like Titan, Summit has a hybrid architecture, and each node contains multiple IBM

POWER9 CPUs and NVIDIA Volta GPUs all connected with NVIDIA’s high-speed

NVLink. Each node has over half a terabyte of coherent memory (high bandwidth

memory + DDR4) addressable by all CPUs and GPUs plus 800GB of non-volatile

RAM that can be used as a burst buffer or as extended memory. To provide a high

rate of I/O throughput, the nodes are connected in a non-blocking fat-tree using

a dual-rail Mellanox EDR InfiniBand interconnect. We used the Summit compute

cluster to train all our models.

A.11 SOFTWARE USED

In addition, we used Python 3.8 [224], PyTorch 1.7.1 [225], and PyTorch Lightning

1.4.8 [226] to run our deep learning experiments. PyTorch Lightning was used to

facilitate model checkpointing, metrics reporting, and distributed data parallelism

across 72 Tesla V100 GPUs. A more in-depth description of the software environment

used to train and predict with DeepInteract models can be found on GitHub at

https://github.com/BioinfoMachineLearning/DeepInteract.
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Chapter B

SUPPLEMENTARYMATERIALS FOR ”GEOMETRY-COM-

PLETE PERCEPTRON NETWORKS FOR 3D MOLECU-

LAR GRAPHS”

Adapted from Alex Morehead and Jianlin Cheng. ”Geometry-complete perceptron

networks for 3D molecular graphs”. Bioinformatics 40.2 (2024): btae087.

B.1 EXPANDED METHODOLOGY DISCUSSION

As a continuation of our methodological overview of GCPNet given in the main text

in Section 3.3.1, here we further describe the equivariance, geometric self-consistency,

and geometric completeness constraints that GCPNet satisfies.

As discussed in Section 3.3.1 of the main text, our GCPNet function Φ guaran-

tees, by design, SE(3) equivariance with respect to its vector-valued input coordinates

and features (i.e., xi ∈ X, χi ∈ χ, and ξij ∈ ξ) and SE(3)-invariance regarding its

scalar features (i.e., hi ∈ H and eij ∈ E). In addition, Φ’s scalar graph representa-

tions achieve geometric self-consistency for the 3D structure of the input molecular

graph G, sensitizing them to the effects of molecular chirality while making them

uniquely identifiable under 3D rotations. Lastly, geometric completeness requires

methods that accept 3D molecular graph inputs to be able to discern the local ge-

ometric environment of a given atom with no directional ambiguities. This enables

geometry-complete methods such as Φ to detect the presence and influence of global
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force fields acting on the graph inputs. Note that we more carefully formalize these

equivariance, geometric self-consistency, and geometric completeness constraints us-

ing three corresponding definitions in Section 3.3.1 of the main text.

B.1.1 SE(3)-equivariant complete representations

As described in the three definitions referenced above, representation learning on 3D

molecular structures is a challenging task for a variety of reasons: (1) an expressive

representation learning model should be able to predict arbitrary vector-valued quan-

tities for each atom and atom pair in the molecular structure (e.g., using χ′ and ξ′

to predict side-chain atom positions and atom-atom displacements for each residue

in a 3D protein graph); (2) arbitrary rotations or translations to a 3D molecular

structure should affect only the vector-valued representations a model assigns to a

molecular graph’s nodes or edges, whereas such 3D transformations of the molecular

structure should not affect the model’s scalar representations for nodes and edges

[77]; (3) the geometrically invariant properties of a molecule’s 3D structure should be

uniquely identifiable by a model; and (4) in a geometry-complete manner, scalar and

vector-valued representations should mutually exchange information between nodes

and edges during a model’s forward pass for a 3D input graph, as these information

types can be correlatively related (e.g., a scalar feature such as the L2 norm of a

vector v can be associated with the vector of origin v) [86, 72].

In line with this reasoning, we need to ensure that the coordinates our model

predicts for the node positions in a molecular graph G transform according to SE(3)

transformations of the input positions. This runs in contrast to previous methods

that remain strictly E(3)-equivariant or E(3)-invariant to 3D transformations of the

input G and consequently ignore the important effects of molecular chirality. At the

same time, the model should jointly update the scalar and vector-valued features of G

according to their respective molecular symmetry groups to increase the model’s ex-

146



pressiveness in approximating geometric and physical quantities [227]. To increase its

generalization capabilities, the model should also disambiguate any geometric direc-

tions within its local node environments and should maintain SE(3)-invariance of its

scalar representations when the input graph is transformed in 3D space. Following

[79], this helps prevent the model from losing important geometric or chiral infor-

mation (i.e., becoming geometrically self-inconsistent) during graph message-passing.

One way to do this is to introduce a new type of message-passing neural network such

as GCPNet, as we have proposed in this work.

B.1.2 Geometry-complete graph convolution with GCPNet

As a continuation of Section 3.3.3 in the main text in which we will now give a more

detailed derivation of how one can perform 3D graph convolution using GCPNet,

let N (i) denote the neighbors of node ni, selected using a distance-based metric such

as k-nearest neighbors or a radial distance cutoff. Subsequently, we define a single

layer l of geometry-complete graph convolution as

nl
i = ϕl(nl−1

i ,A∀j∈N (i)Ω
l
ω(nl−1

i , nl−1
j , eij,Fij)), (B.1)

where nl
i = (hli, χ

l
i); eij = (e0ij, ξ

0
ij); Φ is a trainable function denoted as GCPConv;

l signifies the representation depth of the network; A is a permutation-invariant

aggregation function; and Ωω represents a message-passing function corresponding to

the ω-th GCP message-passing layer. We proceed to expand on the operations of

each graph convolution layer as follows.

To start, messages between source nodes i and neighboring nodes j are first con-

structed as

m0
ij = GCP(n0

i ∪ n0
j ∪ eij,Fij) (B.2)

where ∪ denotes a concatenation operation. Then, up to the ω-th iteration, each
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message is updated by the m-th message update layer using residual connections as

Ωl
ω = ResGCPl

ω(ml−1
ij ,Fij), (B.3)

ResGCPl
η(z

l−1
i ,Fij) = zl−1

i + GCPl
η(z

l−1
i ,Fij), (B.4)

where we empirically find such residual connections between message representations

to reduce oversmoothing within GCPNet by mitigating the problem of vanishing

gradients.

Updated node features n̂l are then derived residually using an aggregation of

generated messages as

n̂l = nl−1 + f({Ωl
ω,vi
|vi ∈ V}), (B.5)

where f represents an aggregation function such as a summation or mean that is

invariant to permutations of node ordering. The residual connection between n̂l and

nl is established here to encourage the network to update the representation space of

node features in a layer-asynchronous manner.

To encourage GCPNet to make its node feature representations independent of

the size of each input graph, we then employ a node-centric feed-forward network to

update node representations. Specifically, we apply to n̂l a linear GCP function with

shared weights ϕf followed by r ResGCP modules, operations concisely portrayed

as

ñl
r−1 = ϕl

f (n̂l) (B.6)

nl = ResGCPl
r(ñ

l
r−1). (B.7)

Lastly, if one desires to update the positions of each node in G (e.g., as we do for tasks

involving position-related predictions such as NMS), we propose a flexible, SE(3)-
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equivariant method to do so using a dedicated GCP module as follows:

(hlpi , χ
l
pi

) = GCPl
p(n

l
i,Fij) (B.8)

xli = xl−1
i + χl

pi
,where χl

pi
∈ R1×3. (B.9)

B.2 PROOFS

B.2.1 Proof of Proposition 1

Proof. Suppose the vector-valued features given to the corresponding GCPConv lay-

ers in GCPNet are node features χi and edge features ξij that are O(3)-equivariant

(i.e., 3D rotation and reflection-equivariant) by way of their construction. Addition-

ally, suppose the scalar-valued features given to the respective GCPConv layers in

GCPNet are E(3)-invariant (i.e., 3D rotation, reflection, and translation-invariant)

node features hi and edge features eij.

Translation equivariance. In line with [77], the Centralize operation on Line

2 of Algorithm 1 in the main text first ensures that X0 becomes 3D translation

invariant by the following procedure. Let X(t) = (x1(t), ...,xn(t)) represent a many-

body system at time t, where the centroid of the system is defined as

C(t) =
x1(t) + ...+ xn(t)

n
. (B.10)

Note that in uniformly translating the position of the system by a vector v, we have

X(t) + v −→ C(t) + v, meaning that the centroid of the system translates in the

same manner as the system itself. However, note that if at time t = 0 we recenter

the origin of X to its centroid, we have

X(t)− C(0)
translation by v at t=0−−−−−−−−−−−−−−−−−→ X(t)− C(0)
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which implies the system X is translation-invariant under the centralized reference

X(t)−C(0) when the translation vector v is applied to X at time t = 0. Concretely,

in the case of translation-invariant tasks such as predicting molecular properties or

classifying point clouds, here we have successfully achieved 3D translation invari-

ance. Moreover, for translation-equivariant tasks such as forecasting the positions of

a many-body system, we can achieve translation equivariance by simply adding C(0)

back to the predicted positions. Therefore, using the above methodology, GCPNets

are translation equivariant.

Permutation equivariance. Succinctly, we note that since GCPNet operates

on graph-structured input data, permutation equivariance is guaranteed by design.

For further discussion of why our proposed method as well as why other graph-based

algorithms proposed previously are inherently permutation-equivariant, we refer read-

ers to [228]. Therefore, GCPNets are permutation-equivariant.

SO(3)-equivariant frames. On Line 3 of Algorithm 1 in the main text, the

Localize operation constructs SO(3)-equivariant (i.e., 3D rotation-equivariant) frames

F ij in the following manner.

Define our frame encodings as

F t
ij = (atij, b

t
ij, c

t
ij), (B.11)

where we have

atij =
xti − xtj
∥xti − xtj∥

, btij =
xti × xtj
∥xti × xtj∥

, ctij = atij × btij. (B.12)

The proof that F t
ij is equivariant under SO(3) transformations of its input space is

included in [77]. However, for completeness, we include a version of it here.

Let g ∈ SO(3) be an action under which the positions in X transform equivari-
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antly, and F t
ij be defined as we have it in Equation B.11 above. That is, we have

(x1(t), ...,xn(t))
g−→ (gx1(t), ..., gxn(t)),

where from the definition of atij in Equation B.12 we have

atij
g−→ gatij.

Considering btij, from Equation B.12 we have

(gxi(t))× (gxj(t)) = det(g)(gT )−1(xi(t)× xj(t))

= g(xi(t)× xj(t)), (B.13)

where using g−1 = gT for the orthogonal matrix g gives us Equation B.13. Con-

sequently, btij
g−→ gbtij. Lastly, by applying Equation B.13 once again, we have that

ctij
g−→ gctij.

Moreover, note that under reflections of x, we have R : x → −x which gives us

atij → −atij. Thereafter, by the right-hand rule, the cross product of two equivariant

vectors gives us a pseudo-vector btij = xti × xtj → btij, where subsequently it is implied

that ctij → −ctij. Consequently, we have det(−atij, btij,−ctij) = 1, informing us that

the frame encodings F t
ij are rotation-equivariant yet not reflection-equivariant (a

symmetry that is important to not enforce when learning representations of chiral

molecules such as proteins). Therefore, the frame encodings within GCPNet are

SO(3)-equivariant.

Note, after the construction of these frames, that they are used on Line 4 of

Algorithm 1 in the main text to embed all node and edge features (i.e., hi, eij, χi,

and ξij) using a single GCP module as well as in all subsequent GCP modules. We

will now prove that the feature updates each GCP module makes with the frame
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encodings F t
ij defined in Equation B.11 are SO(3)-equivariant.

SO(3)-equivariant GCP module. The operations of a GCP module are il-

lustrated in Figure 3.2 in the main text and derived in Section 3.3.2 in the main

text. Their SO(3) invariance for scalar feature updates and SO(3) equivariance for

vector-valued feature updates is proven as follows.

Following the proof of O(3) equivariance for the GVP module in [17], the proof

of SO(3) equivariance within the GCP module is similar, with the following modifi-

cations. Within the GCP module, the vector-valued features (processed separately

for nodes and edges) are fed not only through a bottleneck block comprised of down-

ward and upward projection matrices Dz and Uz but are also fed into a dedicated

downward projection matrix DS . The output of matrix multiplication between O(3)-

equivariant vector features and DS yields O(3)-equivariant vector features viS that are

used as unique inputs for an SO(3)-invariant scalarization operation. In particular,

the following demonstrates the invariance of our design for matrix multiplication with

our GCP module’s projection matrices (e.g., DS). Suppose Wh ∈ Rh×v, V ∈ Rv×3,

and Q ∈ SO(3) ∈ R3×3. In line with [17], observe for D = (QVT) ∈ R3×v that

∥WhD
T∥2 = ∥Wh(VT)T∥2 = ∥WhV∥2.

Specifically, our SO(3)-invariant scalarization operation is defined as

qij = (viS · atij, viS · btij, viS · ctij), (B.14)

where F t
ij = (atij, b

t
ij, c

t
ij) denotes the SO(3)-equivariant frame encodings defined in

Equations B.11 and B.12.

To prove that Equation B.14 yields SO(3)-invariant scalar features, let g ∈ SO(3)

be an arbitrary orthogonal transformation. Then we have viS → gviS , and simi-

larly F t
ij = (atij, b

t
ij, c

t
ij) → (gatij, gb

t
ij, gc

t
ij). Now, similar to [77], we can derive that
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Equation B.14 becomes

(viS · atij, viS · btij, viS · ctij)

→ ((viS )TgTgatij, (viS )TgTgbtij, (viS )TgTgctij)

= (viS · atij, viS · btij, viS · ctij), (B.15)

where we used the fact that gTg = I due to the orthogonality of g (with I being

the identity matrix). Therefore, the scalarization operation proposed in Equation

B.14, and previously in Equation 3.3 in the main text (in an alternative form), yields

SO(3)-invariant scalars, which is in line with the results of [29].

The output of Equation B.14, qij, is then aggregated in Equation 3.4 in the main

text and concatenated in Equation 3.5 in the main text with the GCP module’s

remaining O(3)-invariant scalar features (i.e., L2 vector norm features). Note that

introducing SO(3)-invariant scalar information into the GCP module in this way

breaks the 3D reflection symmetry that previous geometric graph convolution modules

enforced [17], now giving rise within the GCP module to SO(3)-invariant and SO(3)-

equivariant updates to scalar and vector-valued features, respectively. Therefore,

scalar and vector-valued feature updates for nodes and edges within the GCP module

are SO(3)-invariant and SO(3)-equivariant, respectively.

As in Appendix B.1.2, we now turn to discuss the operations within a single

GCPConv layer, in particular proving that they maintain the respective SO(3) in-

variance and SO(3) equivariance for scalar and vector-valued features that the GCP

module provides.

SO(3)-equivariant GCPConv layer. Via the corresponding proof in [17], by

way of induction all such operations in Equations B.1-B.6 are respectively SE(3)-

invariant and SO(3)-equivariant for features ml
ij = (ml

eij
,ml

ξij
). Thereby, so are fea-

tures nl
i = (hli, χ

l
i), given that the proof of equivariance for the equivariant LayerNorm
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and Dropout operations employed within each GCPConv has previously been con-

cretized by [17]. Equation B.8 concludes the operations of a single GCPConv layer

by, as desired, updating the positions of each node i in the 3D input graph. To do so,

GCPConv residually updates current node positions xl−1
i using SO(3)-equivariant

vector-valued features χl
pi

. Therefore, GCPConv layers are SO(3)-invariant for

scalar feature updates and SO(3)-equivariant for vector-valued node position and

feature updates.

SE(3)-equivariant GCPNet. Lastly, as desired, Line 10 of Algorithm 1 in

the main text adds C(0) back to the predicted node positions Xl as provided by

each GCPConv layer, ultimately imbuing position updates within Xl with SE(3)

equivariance. Line 14 then concludes GCPNet by using the latest frame encodings

F t
ij to perform, as desired, a final SO(3)-invariant and SO(3)-equivariant projection

for scalar and vector-valued features, respectively. Therefore, as desired, GCPNets

are SE(3)-invariant for scalar feature updates, SE(3)-equivariant for vector-valued

node position and feature updates, and, as a consequence, satisfy the constraint

proposed in Def. 1 of the main text.

B.2.2 Proof of Proposition 2

Proof. The proof of SE(3) invariance for scalar node and edge features, hi and eij,

follows as a corollary of Appendix B.2.1 (SE(3)-equivariant GCPNet). There-

fore, GCPNets are SE(3)-invariant concerning their predicted scalar node and edge

features and, as a consequence, are geometrically self-consistent according to the con-

straint in Def. 2 of the main text.
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B.2.3 Proof of Proposition 3

Proof. Suppose that GCPNet designates its local geometric representation for layer

t to be F t
ij = (atij, b

t
ij, c

t
ij), where atij =

xt
i−xt

j

∥xt
i−xt

j∥
, btij =

xt
i×xt

j

∥xt
i×xt

j∥
, and ctij = atij × btij,

respectively. As in [77], this formulation of F t
ij is proven in Appendix B.2.1 (SO(3)-

equivariant frames) to be an SO(3)-equivariant local orthonormal basis at the tangent

space of xti and is thereby geometrically complete. Note this implies that GCPNet

permits no loss of geometric information as discussed in Appendix A.5 of [77]. There-

fore, GCPNets are geometry-complete and satisfy the constraint proposed in Def.

3 of the main text.

B.3 IMPLEMENTATION DETAILS

Featurization.

Table B.1: Summary of GCPNet’s node and edge features for 3D input graphs
derived for the LBA and PSR tasks. Here, N and E denote the number of nodes and
edges in G, respectively.

Feature Type Shape

Node Features (h) One-hot encoding of atom type Categorical (Scalar) N × 9

Node Features (χ) Directional encoding of orientation Numeric (Vector) N × 2

Edge Features (e) Radial basis distance embedding Numeric (Scalar) E × 16

Edge Features (ξ) Pairwise atom position displacement Numeric (Vector) E × 1

Total Node features N × 11

Edge features E × 17

As shown in Table B.1, for the LBA and PSR tasks, in each 3D input graph,

we include as a scalar node feature an atom’s type using a 9-dimensional one-hot

encoding vector for each atom. As vector-valued node features, we include forward

and reverse unit vectors in the direction of xi+1 − xi and xi−1 − xi, respectively

(i.e., the node’s 3D orientation). For the input 3D graphs’ scalar edge features, we
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Table B.2: Summary of GCPNet’s node and edge features for 3D input graphs
derived for the NMS task.

Feature Type Shape

Node Features (h) Invariant velocity encoding Numeric (Scalar) N × 1

Node Features (χ) Velocity and orientation encoding Numeric (Vector) N × 3

Edge Features (e) Edge and distance embedding Numeric (Scalar) E × 17

Edge Features (ξ) Pairwise atom position displacement Numeric (Vector) E × 1

Total Node features N × 4

Edge features E × 18

encode the distance ∥xi − xj∥2 using Gaussian radial basis functions, where we use

16 radial basis functions with centers evenly distributed between 0 and 20 units (e.g.,

Angstrom). For the graphs’ vector-valued edge features, we encode the unit vector in

the direction of xi − xj (i.e., pairwise atom position displacements).

As illustrated in Table B.2, for the NMS task, in each 3D input graph, we include

as a scalar node feature an invariant encoding of each node’s velocity vector, namely√
v2i . Each node’s velocity and orientation are encoded as vector-valued node features.

Scalar edge features are represented as Gaussian radial basis distance encodings as

well as the product of the charges in each node pair (i.e., cicj). Lastly, vector-valued

edge features are represented as pairwise atom position displacements.

Hardware used. The Oak Ridge Leadership Facility (OLCF) at the Oak Ridge

National Laboratory (ORNL) is an open science computing facility that supports

HPC research. The OLCF houses the Summit compute cluster. Summit, launched

in 2018, delivers 8 times the computational performance of Titan’s 18,688 nodes,

using only 4,608 nodes. Like Titan, Summit has a hybrid architecture, and each

node contains multiple IBM POWER9 CPUs and NVIDIA Volta GPUs all connected

with NVIDIA’s high-speed NVLink. Each node has over half a terabyte of coherent

memory (high bandwidth memory + DDR4) addressable by all CPUs and GPUs

plus 800GB of non-volatile RAM that can be used as a burst buffer or as extended
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memory. To provide a high rate of I/O throughput, the nodes are connected in a

non-blocking fat-tree using a dual-rail Mellanox EDR InfiniBand interconnect. We

used the Summit compute cluster to train all our models. For the LBA and NMS

tasks, we used 16GB NVIDIA Tesla V100 GPUs for model training, whereas for the

memory-intensive PSR and CPD tasks, we used 32GB V100 GPUs instead.

Software used. We used Python 3.8.12 [224], PyTorch 1.10.2 [225], PyTorch

Lightning 1.7.7 [226], and PyTorch Geometric 2.1.0post0 [88] to run our deep learning

experiments. For each model trained, PyTorch Lightning was used to facilitate model

checkpointing, metrics reporting, and distributed data parallelism across 6 V100

GPUs. A more in-depth description of the software environment used to train and run

inference with our models is available at https://github.com/BioinfoMachineLearning/

GCPNet.

Hyperparameters. As shown in Tables B.3, B.4, B.5, and B.6, we use a learning

rate of 10−4 with GCPNet for all tasks besides the RS task. The learning rate is

kept constant throughout each model’s training. For the NMS task, each model is

trained for a minimum of 100 epochs and a maximum of 12,000 epochs. For all other

tasks, each model is trained for a minimum of 100 epochs and a maximum of 1,000

epochs. For a given task, models with the best loss on the corresponding validation

data split are then tested on the test split for the respective task. Note that, for the

RS task, we do not perform any model hyperparameter tuning, following previous

conventions from [83]. Test set run times are listed in Table B.7 for each task using

the corresponding hyperparameter-tuned GCPNet model.

B.4 REPRESENTATION LEARNING OF 3D BIOMOLECULES

B.4.1 Comparison to existing protein representation learning methods

In Table B.8, we compare GCPNet to previous protein representation learning meth-

ods to highlight its distinguishing capabilities. In particular, GCPNet is the only
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Table B.3: Hyperparameters used with all GCPNet models for the RS task.

Hyperparameter Selected Values

Number of GCPNet Layers 8

Number of GCP Message-Passing Layers 8

χ Hidden Dimensionality 16

Learning Rate 0.0005

Weight Decay Rate 0

GCP Dropout Rate 0.1

Dense Layer Dropout Rate 0.1

Table B.4: Hyperparameter search space for all GCPNet models through which we
searched to obtain strong performance on the LBA task’s validation split. The final
parameters for the standard GCPNet model for the LBA task are in bold.

Hyperparameter Search Space

Number of GCPNet Layers 7, 8

Number of GCP Message-Passing Layers 8

χ Hidden Dimensionality 16, 32

Learning Rate 0.0001, 0.0003

Weight Decay Rate 0

GCP Dropout Rate 0.1, 0.25

Dense Layer Dropout Rate 0.1, 0.25

method that can produce arbitrary vector outputs while respecting SE(3) symme-

tries and, consequently, full sensitivity to molecular chirality. Furthermore, it can do

so while representing 3D protein structures completely and self-consistently, thereby

with no loss of force-related or geometric information.

B.4.2 Future directions for representation learning of 3D biomolecules

Towards enhanced geometric representation learning of 3D biomolecules, we postulate

that chirality sensitivity may be further strengthened for downstream tasks via a

chirality-specific auxiliary loss function employed during model training. For example,

drawing inspiration from AlphaFold 2 [15], such a loss function may periodically (e.g.,
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Table B.5: Hyperparameter search space for all GCPNet models through which we
searched to obtain strong performance on the PSR task’s validation split. The final
parameters for the standard GCPNet model for the PSR task are in bold.

Hyperparameter Search Space

Number of GCPNet Layers 5

Number of GCP Message-Passing Layers 8

χ Hidden Dimensionality 16, 32

Learning Rate 0.0001, 0.0003

Weight Decay Rate 0, 0.0001

GCP Dropout Rate 0.1, 0.25

Dense Layer Dropout Rate 0.1, 0.25

Table B.6: Hyperparameter search space for all GCPNet models through which we
searched to obtain strong performance on the NMS task’s validation split. The final
parameters for the standard GCPNet model for the NMS task are in bold.

Hyperparameter Search Space

Number of GCPNet Layers 4, 7

Number of GCP Message-Passing Layers 8

χ Hidden Dimensionality 16

Learning Rate 0.0001, 0.0003

Weight Decay Rate 0

GCP Dropout Rate 0.0, 0.1

50% of the time) penalize a method for producing scalar graph representations of

mirrored biomolecular structures that are highly similar to one another in terms of

cosine vector similarity, although doing so would require two forward passes of the

model (e.g., 50% of the time) during training. Future work may investigate the utility

of such auxiliary training objectives or efficient proxies of them.

To strengthen a method’s awareness of global forces, we believe future research into

optimal strategies for dynamically updating local coordinate frames during a method’s

forward pass may prove useful for geometric representation learning of atomic systems.

For example, updating a method’s local coordinate frames between individual network
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Table B.7: Run times (in seconds) using GCPNet on the test dataset of each task.

Task Test Dataset Size Run Time (s)

RS 4480 472

LBA 490 47

PSR 16014 2231

NMS - ES(5) 2000 18

NMS - ES(20) 2000 12

NMS - G+ES(20) 2000 12

NMS - L+ES(20) 2000 12

Table B.8: Comparisons of existing protein geometric representation learning meth-
ods, adapted from [79]. Firstly, modeling protein graph nodes as atoms expands the
range of molecular functions a method can directly represent (e.g., force field param-
eters) at the cost of increased computational complexity. Here n, N , and k denote
the number of amino acids, the number of atoms, and the average degree in a 3D
protein graph, and N >> n. Our method is the only one that can learn and produce
general vector outputs while maintaining SE(3) symmetries and thereby sensitivity
to molecular chirality. Lastly, our method can do so while capturing 3D structures in
a geometry-complete (i.e., local coordinates-wise) and self-consistent (i.e., scalar-wise
SE(3)-invariant) manner.

Method Node Type Complexity Symmetry Complete Self-Consistent Produces General Vectors Chirality-Aware

GearNet [22] Amino Acid O(nk) E(3) invariance ✗ ✗ ✗ ✗

ProNet [79] Amino Acid O(nk) SE(3) invariance ✓ ✓ ✗ ✓

GVP-GNN etc. [17] Amino Acid O(nk) E(3) equivariance ✗ ✗ ✓ ✗

Vector-Gated GVP-GNN [76] Atom O(Nk) E(3) equivariance ✗ ✗ ✓ ✗

IEConv [229] Atom O(Nk) E(3) invariance ✗ ✗ ✗ ✗

ClofNet [77] Atom O(Nk) SE(3) equivariance ✓ ✓ ✗ ✓

Ours Atom O(Nk) SE(3) equivariance ✓ ✓ ✓ ✓

layers that directly update node coordinates may yield fruitful results in this direction.

Consequently, such techniques warrant further investigation in future work.

Lastly, in light of the promising results with GCPNet in Section 3.4 of the main

text, future work on modeling could involve researching more computationally effi-

cient variations of GCPNet that require fewer GCP message-passing layers within

each GCP convolution layer or that embed geometric frames sparsely rather than in

each GCP layer. For the LBA task in particular, incorporating known protein-ligand

interaction information to predict binding affinity is a promising direction for future

work on binding affinity prediction [80] and may lead to improved performance for
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many of the methods listed in Table 2 of the main text. Another promising future di-

rection to improve methods such as GCPNet is to improve the expressivity of such

methods by learning higher-order equivariant tensors within one’s message-passing

procedure. Enhancing geometric expressiveness to thereby increase a method’s effec-

tive run time efficiency would allow GCPNet to be used increasingly in new scientific

and deep learning applications requiring high computational throughput (e.g., virtual

screening of new drugs).
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Chapter C

SUPPLEMENTARYMATERIALS FOR ”GEOMETRY-COM-

PLETE DIFFUSION FOR 3D MOLECULE GENERATION

AND OPTIMIZATION”

Adapted from Alex Morehead and Jianlin Cheng. ”Geometry-complete diffusion for

3D molecule generation and optimization”. Communications Chemistry 7.1 (2024):

150.

C.1 SUPPLEMENTARY METHODS

C.1.1 Expanded discussion of denoising

Geometry-complete denoising

In this section, we postulate that certain types of geometric neural networks serve as

more effective 3D graph denoising functions for molecular DDPMs. We describe this

notion as follows.

Hypothesis C.1.1. (Geometry-Complete Denoising).

Geometric neural networks that achieve geometry-completeness are more robust in

denoising 3D molecular network inputs compared to models that are not geometry-

complete, in that geometry-complete methods unambiguously define direction-robust
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local geometric reference frames.

This hypothesis comes as an extension of the definition of geometry-completeness

from [77] and [146]:

Definition 4. (Geometric Completeness).

Given a pair of node positions (xti, x
t
j) in a 3D graph G,

with vectors atij ∈ R1×3, btij ∈ R1×3, and ctij ∈ R1×3 derived from (xti, x
t
j),

a local geometric representation F t
ij = (atij, b

t
ij, c

t
ij) ∈ R3×3 is considered

geometrically complete if F t
ij is non-degenerate, hence forming

a local orthonormal basis located at the tangent space of xti.

An intuition for the implications of Hypothesis C.1.1 and Definition 4 on molec-

ular diffusion models is that geometry-complete networks should be able to more

effectively learn the gradients of data distributions [147] in which a global force field

is present, as is typically the case with 3D molecules [77]. This is because, broadly

speaking, geometry-complete methods encode local reference frames for each node (or

edge) under which the directions of arbitrary global force vectors can be mapped. In

addition to describing the theoretical benefits offered to geometry-complete denoising

networks, we support this hypothesis through specific ablation studies in Sections

4.3.1 and 4.3.3 of the main text where we ablate the geometric frame encodings from

GCDM and find that such frames are particularly useful in improving GCDM’s

ability to generate realistic 3D molecules.
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GCPNet++

Inspired by its recent success in modeling 3D molecular structures with geometry-

complete message-passing, we parametrize pΦ using an enhanced version of Geometry-

Complete Perceptron Networks (GCPNets) that were originally introduced by [146].

To summarize, GCPNet is a geometry-complete graph neural network that is equiv-

ariant to SE(3) transformations of its graph inputs and maps nicely to the context of

Hypothesis C.1.1.

In this setting, with (hi ∈ H, χi ∈ χ, eij ∈ E, ξij ∈ ξ), GCPNet++, our en-

hanced version of GCPNet, consists of a composition of Geometry-Complete Graph

Convolution (GCPConv) layers (hli, χ
l
i), x

l
i = GCPConv[(hl−1

i , χl−1
i ), (el−1

ij , ξl−1
ij ), xl−1

i ,Fij]

which are defined as:

nl
i = ϕl(nl−1

i ,A∀j∈N (i)Ω
l
ω(nl−1

i , nl−1
j , el−1

ij , ξl−1
ij ,Fij)), (C.1)

where nl
i = (hli, χ

l
i); ϕl is a trainable function; l signifies the representation depth

of the network; A is a permutation-invariant aggregation function; Ωω represents

a message-passing function corresponding to the ω-th GCP message-passing layer

[146]; and node i’s geometry-complete local frames are F t
ij = (atij, b

t
ij, c

t
ij), with atij =

xt
i−xt

j

∥xt
i−xt

j∥
, btij =

xt
i×xt

j

∥xt
i×xt

j∥
, and ctij = atij × btij, respectively. Importantly, GCPNet++

restructures the network flow of GCPConv [146] for each iteration of node feature

updates to simplify and enhance information flow, concretely from the form of

n̂l = nl−1 + f(Ωl
ω,vi
|vi ∈ V) (C.2)

to

n̂l = nl−1 ∪ f((gleω ,vi ,Ω
l
eω ,vi

,Ωl
ξω ,vi

)|vi ∈ V) (C.3)
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and from

nl = ResGCPl
r(ñ

l
r−1) (C.4)

to

nl = GCPl
r(ñ

l
r−1). (C.5)

Note that here f represents a summation or a mean function that is invariant to

node order permutations; ∪ denotes the concatenation operation; gleω ,vi represents

the binary-valued (i.e., [0, 1]) output of a scalar message attention (gating) function,

expressed as

gleω = σinf (ϕl
inf (Ωl

eω)) (C.6)

with ϕinf : Re → [0, 1]1 mapping from high-dimensional scalar edge feature space to a

single dimension and σ denoting a sigmoid activation function; r is the node feature

update module index; ResGCP is a version of the GCP module with added residual

connections; and Ωl
ω,vi

= (Ωl
eω ,vi

,Ωl
ξω ,vi

) represents the scalar (e) and vector-valued

(ξ) messages derived with respect to node vi using up to ω message-passing iterations

within each GCPNet++ layer.

We found these adaptations to provide state-of-the-art molecule generation results

compared to the original node feature updating scheme, which we found yielded sub-

optimal results in the context of generative modeling. This highlights the importance

of customizing representation learning algorithms for the generative modeling task at

hand, since reasonable performance may not always be achievable with them without

careful adaptations. It is worth noting that, since GCPNet++ performs message-

passing directly on 3D vector features, GCDM is thereby the first diffusion generative

model that is in principle capable of generating 3D molecules with specific vector-

valued properties, thereby setting the stage for important future work.
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Properties of GCDM

If one desires to update the coordinate representations of each node in G, as we do

in the context of 3D molecule generation, the GCPConv module of GCPNet++

provides a simple, SE(3)-equivariant method to do so using a dedicated GCP module

as follows:

(hlpi , χ
l
pi

) = GCPl
p(n

l
i,Fij) (C.7)

xli = xl−1
i + χl

pi
,where χl

pi
∈ R1×3, (C.8)

where GCPl
·(·,Fij) is defined to provide chirality-aware rotation and translation-

invariant updates to hi and rotation-equivariant updates to χi following centralization

of the input point cloud’s coordinates X [77]. The effect of using positional feature

updates χpi to update xi is, after decentralizing X following the final GCPConv

layer, that updates to xi then become SE(3)-equivariant. As such, all transforma-

tions described above satisfy the required equivariance constraints. Therefore, in

integrating GCPNet++ as its 3D graph denoiser, GCDM achieves SE(3) equiv-

ariance, geometry-completeness, and likelihood invariance altogether. Important to

note is that GCDM subsequently performs message-passing with vector features to

denoise its geometric inputs, whereas previous methods denoise their inputs solely us-

ing geometrically-insufficient scalar message-passing [107] as we demonstrate through

our experiments in Section 4.3 of the main text.
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C.1.2 Expanded discussion of diffusion

Diffusion models

Key to understanding the contributions in this work are denoising diffusion probabilis-

tic models (DDPMs). As alluded to previously, once trained, DDPMs can generate

new data of arbitrary shapes, sizes, formats, and geometries by learning to reverse a

noising process acting on each model input. More precisely, for a given data point x,

a diffusion process adds noise to x for time step t = 0, 1, ..., T to yield zt, a noisy rep-

resentation of the input x at time step t. Such a process is defined by a multivariate

Gaussian distribution:

q(zt|x) = N (zt|αtxt, σ
2
t I), (C.9)

where αt ∈ R+ regulates how much feature signal is retained and σ2
t modulates

how much feature noise is added to input x. Note that we typically model α as a

function defined with smooth transitions from α0 = 1 to αT = 0, where a special

case of such a noising process, the variance preserving process [230, 147], is defined

by αt =
√

1− σ2
t . To simplify notation, in this work, we define the feature signal-to-

noise ratio as SNR(t) = α2
t/σ

2
t . Also interesting to note is that this diffusion process

is Markovian in nature, indicating that we have transition distributions as follows:

q(zt|zs) = N (zt|αt|szs, σ
2
t|sI), (C.10)

for all t > s with αt|s = αt/αs and σ2
t|s = σ2

t −α2
t|sσ

2
s . In total, then, we can write the

noising process as:

q(z0, z1, ..., zT |x) = q(z0|x)
T∏
t=1

q(zt|zt−1). (C.11)
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If we then define µt→s(x, zt) and σt→s as

µt→s(x, zt) =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

x and σt→s =
σt|sσs
σt

,

we have that the inverse of the noising process, the true denoising process, is given

by the posterior of the transitions conditioned on x, a process that is also Gaussian:

q(zs|x, zt) = N (zs|µt→s(x, zt), σt→sI). (C.12)

The Generative Denoising Process. In diffusion models, we define the gener-

ative process according to the true denoising process. However, for such a denoising

process, we do not know the value of x a priori, so we typically approximate it as

x̂ = ϕ(zt, t) using a neural network ϕ. Doing so then lets us express the generative

transition distribution p(zs|zt) as q(zs|x̂(zt, t), zt). As a practical alternative to Eq.

C.12, we can represent this expression using the approximation for x̂:

p(zs|zt) = N (zs|µt→s(x̂, zt), σ
2
t→sI). (C.13)

If we choose to define s as s = t− 1, then we can derive the variational lower bound

on the log-likelihood of x given the generative model as:

log p(x) ≥ L0 + Lbase +
T∑
t=1

Lt, (C.14)

where we note that L0 = log p(x|z0) models the likelihood of the data given its

noisy representation z0, Lbase = −KL(q(zT |x)|p(zT )) models the difference between

a standard normal distribution and the final latent variable q(zT |x), and

Lt = −KL(q(zs|x, zt)|p(zs|zt)) for t = 1, 2, ..., T.
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Note that, in this formation of diffusion models, the neural network ϕ directly predicts

x̂. However, [147] and others have found optimization of ϕ to be made much easier

when instead predicting the Gaussian noise added to x to create x̂. An intuition

for how this changes the neural network’s learning dynamics is that, when predicting

back the noise added to the model’s input, the network is being trained to more

directly differentiate which part of zt corresponds to the input’s feature signal (i.e.,

the underlying data point x) and which part corresponds to added feature noise. In

doing so, if we let zt = αtx + σtϵ, the neural network can then predict ϵ̂ = ϕ(zt, t)

such that:

x̂ = (1/αt) zt − (σt/αt) ϵ̂. (C.15)

[215] and others have since shown that, when parametrizing the denoising neural

network in this way, the loss term Lt reduces to:

Lt = Eϵ∼N (0,I)

[
1

2
(1− SNR(t− 1)/SNR(t))∥ϵ− ϵ̂∥2

]
(C.16)

Note that, in practice, the loss term Lbase should be close to zero when using a noising

schedule defined such that αT ≈ 0. Moreover, if and when α0 ≈ 1 and x is a discrete

value, we will find L0 to be close to zero as well.

Zeroth likelihood terms for GCDM optimization objective

For the zeroth likelihood terms corresponding to each type of input feature, we directly

adopt the respective terms previously derived by [114]. Doing so enables a negative

log-likelihood calculation for GCDM’s predictions. In particular, for integer node

features, we adopt the zeroth likelihood term:

p(h|z(h)0 ) =

∫ h+ 1
2

h− 1
2

N (u|z(h)0 , σ0)du, (C.17)
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where we use the CDF of a standard normal distribution, Φ, to compute Eq. C.17

as Φ((h + 1
2
− z

(h)
0 )/σ0) − Φ((h − 1

2
− z

(h)
0 )/σ0) ≈ 1 for reasonable noise parameters

α0 and σ0 [114]. For categorical node features, we instead use the zeroth likelihood

term:

p(h|z(h)0 ) = C(h|p),p ∝
∫ 1+ 1

2

1− 1
2

N (u|z(h)0 , σ0)du, (C.18)

where we normalize p to sum to one and where C is a categorical distribution [114].

Lastly, for continuous node positions, we adopt the zeroth likelihood term:

p(x|z(x)0 ) = N
(
x|z(x)0 /α0 − σ0/α0ϵ̂0, σ

2
0/α

2
0I
)

(C.19)

which gives rise to the log-likelihood component L(x)
0 as:

L(x)
0 = Eϵ(x)∼Nx(0,I)

[
logZ−1 − 1

2
∥ϵx − ϕ(x)(z0, 0)∥2

]
, (C.20)

where d = 3 and the normalization constant Z = (
√

2π · σ0/α0)
(N−1)·d - in particular,

its (N − 1) · d term - arises from the zero center of gravity trick mentioned in Section

4.5.4 of the main text [114].

Diffusion models and equivariant distributions

In the context of diffusion generative models of 3D data, one often desires for the

marginal distribution p(x) of their denoising neural network to be an invariant dis-

tribution. Towards this end, we observe that a conditional distribution p(y|x) is

equivariant to the action of 3D rotations by meeting the criterion:

p(y|x) = p(Ry|Rx) for all orthogonal R. (C.21)
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Moreover, a distribution is invariant to rotation transformations R when

p(y) = p(Ry) for all orthogonal R. (C.22)

As [231] and [103] have collectively demonstrated, we know that if p(zT ) is invariant

and the neural network we use to parametrize p(zt−1|zt) is equivariant, we have, as

desired, that the marginal distribution p(x) of the denoising model is an invariant

distribution.

Training and sampling procedures for GCDM

Equivariant Dynamics. In this work, we use the previous definition of GCP-

Net++ in Section C.1.1 to learn an SE(3)-equivariant dynamics function [ϵ̂(x), ϵ̂(h)] =

ϕ(z
(x)
t , z

(h)
t , t) as:

ϵ̂
(x)
t , ϵ̂

(h)
t = GCPNet++(z

(x)
t , [z

(h)
t , ψ(z

(x)
t ), t/T ])− [z

(x)
t ,0], (C.23)

where we inform the denoising model of the current time step by concatenating t/T

as an additional node feature and where we subtract the coordinate representation

outputs of GCPNet++ from its coordinate representation inputs after subtracting

from the coordinate representation outputs their collective center of gravity. Lastly

yet importantly, as a geometric GNN, GCPNet++ can embed geometric vector

features in addition to scalar features. Subsequently, from the noisy coordinates rep-

resentation z
(x)
t we derive noisy sequential (node) orientation unit vectors and pairwise

(edge) displacement unit vectors ψ(z
(x)
t ), respectively, and embed these features us-

ing GCPNet++’s vector feature channels for nodes and edges accordingly. With

the parametrization in Eq. 4.5 of the main text, GCDM subsequently achieves ro-

tation equivariance on x̂i, thereby achieving a 3D translation and rotation-invariant

marginal distribution p(x) as described in Appendix C.1.2.
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Scaling Node Features. In line with [114], to improve the log-likelihood of

the model’s generated samples, we find it useful to train and perform sampling with

GCDM using scaled node feature inputs as [x, 1
4
h(categorical), 1

10
h(integer)].

Deriving The Number of Atoms. Finally, to determine the number of atoms

with which GCDM will generate a 3D molecule, we first sample N ∼ p(N), where

p(N) denotes the categorical distribution of molecule sizes over GCDM’s training

dataset. Then, we conclude by sampling x,h ∼ p(x,h|N).
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C.2 SUPPLEMENTARY NOTES

C.2.1 Broader impacts

In this chapter, we investigated the impact of geometric representation learning on

generative models for 3D molecules. Such research can contribute to drug discovery

efforts by accelerating the development of new medicinal or energy-related molecular

compounds, and, as a consequence, can yield positive societal impacts [232]. Nonethe-

less, in line with [233], we authors would argue that it will be critical for institutions,

governments, and nations to reach a consensus on the strict regulatory practices that

should govern the use of such molecule design methodologies in settings in which it is

reasonably likely such methodologies could be used for nefarious purposes by scientific

”bad actors”.

C.2.2 Training details

Scalar Message Attention. In our implementation of scalar message attention

(SMA) within GCDM, mij = eijmij, where mij represents the scalar messages

learned by GCPNet++ during message-passing and eij represents a 1 if an edge

exists between nodes i and j (and a 0 otherwise) via eij ≈ ϕinf (mij). Here, ϕinf :

Re → [0, 1]1 resembles a linear layer followed by a sigmoid function [18].

GCDM hyperparameters. All GCDM models train on QM9 for approximately

1,000 epochs using 9 GCPConv layers; SiLU activations [234]; 256 and 64 scalar

node and edge hidden features, respectively; and 32 and 16 vector-valued node and

edge features, respectively. All GCDM models are also trained using the AdamW

optimizer [235] with a batch size of 64, a learning rate of 10−4, and a weight decay

rate of 10−12.

GCDM runtime. With a maximum batch size of 64, this 9-layer model con-

figuration allows us to train GCDM models for unconditional (conditional) tasks
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on the QM9 dataset using approximately 10 (15) days of GPU training time with a

single 24GB NVIDIA A10 GPU. For unconditional molecule generation on the much

larger GEOM-Drugs dataset, a maximum batch size of 64 allows us to train 4-layer

GCDM models using approximately 60 days of GPU training time with a single

48GB NVIDIA RTX A6000 GPU. As such, access to several GPUs with larger GPU

memory limits (e.g., 80GBs) should allow one to concurrently train GCDM models

in a fraction of the time via larger batch sizes or data-parallel training techniques

[226].

C.2.3 Compute requirements

Training GCDM models for tasks on the QM9 dataset by default requires a GPU

with at least 24GB of GPU memory. Inference with such GCDM models for QM9

is much more flexible in terms of GPU memory requirements, as users can directly

control how soon a molecule generation batch will complete according to the size

of molecules being generated as well as one’s selected batch size during sampling.

Training GCDM models for unconditional molecule generation on the GEOM-Drugs

dataset by default requires a GPU with at least 48GB of GPU memory. Similar to the

GCDM models for QM9, inference with GEOM-Drugs models is flexible in terms of

GPU memory requirements according to one’s choice of sampling hyperparameters.

Note that inference for both QM9 models and GEOM-Drugs models can likely be

accelerated using techniques such as DDIM sampling [143]. However, we have not

officially validated the quality of generated molecules using such sampling techniques,

so we caution users to be aware of this potential risk of degrading molecule sample

quality when using such sampling algorithms.
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C.2.4 Reproducibility

On GitHub, we thoroughly provide all source code, data, and instructions required

to train new GCDM models or reproduce our results for each of the four protein-

independent molecule generation tasks we study in this work. The source code,

data, and instructions for our protein-conditional molecule generation experiments

are also available on GitHub. Our source code uses PyTorch [236] and PyTorch

Lightning [226] to facilitate model training; PyTorch Geometric [237] to support

sparse tensor operations on geometric graphs; and Hydra [238] to enable reproducible

hyperparameter and experiment management.
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Task α ↓ / MS ↑ ∆ϵ ↓ / MS ↑ ϵHOMO ↓ / MS ↑ ϵLUMO ↓ / MS ↑ µ ↓ / MS ↑ Cv ↓ / MS ↑
Units Bohr3 / % meV / % meV / % meV / % D / % cal

mol
K / %

Initial Samples (Moderately Stable) 4.61± 0.2 / 61.7 1.26± 0.1 / 61.7 0.53± 0.0 / 61.7 1.25± 0.0 / 61.7 1.35± 0.1 / 61.7 2.93± 0.1 / 61.7

EDM-Opt (100 steps on initial samples) 4.45± 0.6 / 77.6± 2.1 0.98± 0.1 / 80.0± 2.0 0.45± 0.0 / 78.8± 1.0 0.91± 0.0 / 83.4± 4.6 6e5 ± 6e5 / 78.3± 2.9 2.72± 2.6 / 51.0± 109.7

EDM-Opt (250 steps on initial samples) 1e2 ± 5e2 / 80.1± 2.1 1e3 ± 6e3 / 83.7± 3.8 0.44± 0.0 / 82.5± 1.3 0.91± 0.1 / 84.7± 1.6 2e5 ± 8e5 / 81.0± 5.8 2.15± 0.1 / 78.5± 3.4

GCDM-Opt (100 steps on initial samples) 3.29± 0.1 / 86.2± 1.3 0.93± 0.0 / 89.0± 1.9 0.43± 0.0 / 91.6± 3.5 0.86± 0.0 / 87.0± 1.7 1.08± 0.1 / 89.9± 4.2 1.81± 0.0 / 87.6± 1.1

GCDM-Opt (250 steps on initial samples) 3.24± 0.2 / 86.6± 1.9 0.93± 0.0 / 89.7± 2.2 0.43± 0.0 / 90.7± 0.0 0.85± 0.0 / 88.6± 3.8 1.04± 0.0 / 89.5± 2.6 1.82± 0.1 / 87.6± 2.3

Table C.1: Comparison of GCDM with baseline methods for property-guided 3D
molecule optimization. The results are reported in terms of molecular stability (MS)
and the MAE for molecular property prediction by an ensemble of three EGNN
classifiers ϕc (each trained on the same QM9 subset using a distinct random seed)
yielding corresponding Student’s t-distribution 95% confidence intervals, with results
listed for EDM and GCDM-optimized samples as well as the molecule generation
baseline (”Initial Samples”). Note that certain experiments with an EDM optimizer
yielded unsuccessful property optimization, where we denote such results as outlier
property MAE values greater than 50. The top-1 (best) results for this task are in
bold, and the second-best results are underlined.

C.3 SUPPLEMENTARY RESULTS

C.3.1 Property-guided 3D molecule optimization - QM9

In Table C.1, for completeness, we list the numeric molecule optimization results

comprising Figure 4.6 of the main text.
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Chapter D

SUPPLEMENTARYMATERIALS FOR ”GEOMETRIC FLOW

MATCHING FORGENERATIVE PROTEIN-LIGANDDOCK-

ING AND AFFINITY PREDICTION”

Adapted from Alex Morehead and Jianlin Cheng. ”FlowDock: Geometric Flow

Matching for Generative Protein-Ligand Docking and Affinity Prediction”.

Intelligent Systems for Molecular Biology & Bioinformatics (ISMB 2025).

D.1 GEOMETRIC FLOWMATCHING TRAINING AND INFERENCE

We characterize FlowDock’s training and sampling procedures in Sections 5.3.5

(Training) and 5.3.6 (Sampling) of the main text, respectively. To further illustrate

how training and inference with FlowDock work, in Algorithms 3 and 4 we provide

the corresponding pseudocode. For more details, please see our accompanying source

code at https://github.com/BioinfoMachineLearning/FlowDock.
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Algorithm 3 Training

Require: Training examples of binding site-aligned apo (holo) protein (ligand)
structures, protein sequences, ligand SMILES strings, and binding affinities
{(XP

ai
, XP

hi
, XL

hi
, Si,Mi, Bi)}

1: for all (XP
ai
, XP

hi
, XL

hi
, Si,Mi, Bi) do

2: Extract xP1 , x
L
1 ← HeavyAtoms(XP

hi
, XL

hi
)

3: Sample xP0 ← ESMFold(Si) + ϵ, ϵ ∼ N (0, σ = 1e−4)
4: Sample xL0 ← HarmonicPrior(Mifrag), ∀frag ∈Mi

5: Sample t ∼ U(0, 1)
6: Concatenate x0 = Concat(xP0 , x

L
0 )

7: Concatenate x1 = Concat(xP1 , x
L
1 )

8: Interpolate xt ← t · x1 + (1− t) · x0
9: Predict X̂hi

← NeuralPLexer(Si,Mi, xt, t)
10: Predict B̂i ← ESDMaff (Si,Mi, StopGrad(X̂hi

))

11: Optimize losses LX := λX ·FAPE(Xhi
, X̂hi

) +LB := λB ·MSE(B̂i, Bi), λX =
0.2, λB = 0.1

Algorithm 4 Inference

Require: Protein sequences and ligand SMILES strings (S,M)
Ensure: Sampled top-5 heavy-atom structures X̂ with confidence scores Ĉ and bind-

ing affinities B̂
1: Sample xP0 ← ESMFold(S) + ϵ, ϵ ∼ N (0, σ = 1e−4)
2: Sample xL0 ← HarmonicPrior(Mfrag), ∀frag ∈M
3: Concatenate x0 = Concat(xP0 , x

L
0 )

4: for n← 0 to i do
5: Let t← n

i
and s← n+1

i

6: Predict X̂ ← NeuralPLexer(S,M, xn, t)
7: if n = i− 1 then
8: Predict Ĉ ← ESDMconf (S,M, X̂) # Pre-trained

9: Predict B̂ ← ESDMaff (S,M, X̂)

10: Rank top-5 X̂ and B̂ using Ĉ
11: return X̂, Ĉ, B̂

12: Extract x̂1 ← HeavyAtoms(X̂)
13: Align xn ← RMSDAlign(xn, x̂1)
14: Interpolate xn+1 = clamp(1−s

1−t
· η) · xn + clamp((1− 1−s

1−t
) · η) · x̂1, η = 1
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Figure D.1: Comparison of FlowDock’s predicted structure states (w/o hydrogens)
for CASP16 superligand pose pharma target L3008.

D.2 STRUCTURE GENERATION EXAMPLE TRAJECTORY

To illustrate one of FlowDock’s interpretable structure generation trajectories using

conditional flow matching, in Figure D.1, we report FlowDock’s predicted struc-

tural states for CASP16 superligand pose pharma target L3008, notably a multi -

ligand pose target, in evenly spaced increments throughout FlowDock’s generation

trajectory. In short, we see that FlowDock enables multi-ligand protein complexes

to be predicted through concise flow trajectories, yielding early protein and ligand

conformational changes following the model’s initial binding pocket prediction.

D.3 CASP16 STRUCTURE PREDICTION RESULTS

In Figure D.2, we compare the protein-ligand structure prediction RMSDs of Flow-

Dock and MULTICOM ligand [239], a top-5 multi-model deep learning prediction

method in the CASP16 ligand prediction category, for the 231 superligand pose

pharma targets made available during the 16th Critical Assessment of Techniques

for Structure Prediction (CASP16). As these results demonstrate, FlowDock, as a

standalone deep learning method, achieves competitive structure predictions for many

of the new CASP16 ligand targets. Similarly, Figure D.3 illustrates that FlowDock

and MULTICOM ligand are approximately tied in terms of their ability to struc-

turally model CASP16’s 56 multi -ligand protein complexes, highlighting the broad

applicability of FlowDock’s structure predictions in diverse drug discovery settings.
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Figure D.2: Comparison of the protein-ligand structure prediction results of Flow-
Dock and the deep learning ensembling method MULTICOM ligand in terms of their
binding pocket-aligned ligand RMSDs for the CASP16 superligand pose pharma tar-
gets (n=301).

180



Figure D.3: Comparison of the protein-(multi-)ligand structure prediction results
of FlowDock and the deep learning ensembling method MULTICOM ligand in
terms of their binding pocket-aligned ligand RMSDs for the CASP16 superligand
pose pharma targets (n=126).
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Figure D.4: Analysis of the protein-ligand structure prediction results of FlowDock
in terms of its binding pocket-aligned ligand RMSDs for the chemically dissimilar
(multi-)ligand PoseBusters Benchmark targets (n=18).

D.4 POSEBUSTERS BENCHMARK LIGANDDISSIMILARITY STRUC-

TURE PREDICTION RESULTS

To investigate FlowDock’s chemical generalization capabilities, in Figure D.4, we

illustrate the structure prediction performance of FlowDock for chemically dissim-

ilar (Tanimoto similarity < 0.6) ligands associated with the same protein target in

the PoseBusters Benchmark dataset. Figure D.4 shows that FlowDock’s average

ligand RMSD of each of these (multi-)ligand protein targets is approximately 2 Å,

with a standard deviation around 1 Å, highlighting that its predictions for chemi-

cally dissimilar intra-protein ligands are of high average accuracy and demonstrate

generalizability with the consistency of FlowDock’s average inter-ligand RMSD

differences.
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Chapter E

SUPPLEMENTARYMATERIALS FOR ”DEEP LEARNING

FOR PROTEIN-LIGANDDOCKING: AREWE THERE YET?”

Adapted from Alex Morehead, Nabin Giri, Jian Liu, Pawan Neupane, and Jianlin

Cheng. ”Deep Learning for Protein-Ligand Docking: Are We There Yet?”. AI for

Science Workshop of the Forty-First International Conference on Machine Learning

(ICML 2024 AI4Science Spotlight).

E.1 AVAILABILITY

The PoseBench codebase and tutorial notebooks are available under an MIT li-

cense at https://github.com/BioinfoMachineLearning/PoseBench. Preprocessed

datasets and benchmark method predictions and results are available on Zenodo [240]

under a CC-BY 4.0 license, of which the Astex Diverse and PoseBusters Bench-

mark datasets [112] and the DockGen-E dataset are associated with a CC-BY 4.0

license, and of which the CASP15 dataset [200], as a mixture of publicly and pri-

vately available resources, is partially licensed. In particular, 15 (4 single-ligand

and 11 multi-ligand targets) of the 19 CASP15 protein-ligand interaction (PLI) com-

plexes evaluated with PoseBench are publicly available, whereas the remaining 4

(2 single-ligand and 2 multi-ligand targets) are confidential and, for the purposes of

future benchmarking and reproducibility, must be requested directly from the CASP

organizers. Notably, the pre-holo-aligned protein structures predicted by AlphaFold
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3 (AF3) for these four benchmark datasets (available on Zenodo [240]) must only

be used in accordance with AF3’s Terms of Use, whereas the pre-holo-aligned pro-

tein structures predicted by ESMFold for these four benchmark datasets (available

on Zenodo [240]) are available under a permissive MIT license. Lastly, our use of

the PoseBusters software suite for molecule validity checking is permitted under a

BSD-3-Clause license.

E.2 BROADER IMPACTS

Our benchmark unifies protein-ligand structure prediction datasets, methods, and

tasks to enable enhanced insights into the real-world utility of such methods for

accelerated drug discovery and energy research. We acknowledge the risk that, in

the hands of ”bad actors”, such technologies may be used with harmful ends in

mind. However, it is our hope that efforts in elucidating the performance of recent

protein-ligand structure prediction methods in various macromolecular contexts will

disproportionately influence the positive societal outcomes of such research such as

improved medicines and subsequent clinical outcomes as opposed to possible negative

consequences such as the development of new bioweapons.

E.3 COMPUTE RESOURCES

To produce the results presented in this chapter, we ran a high performance com-

puting sweep that concurrently utilized 12 80GB NVIDIA A100 GPUs for 14 days

in total to run inference with each baseline method three times (where applicable),

where each baseline deep learning (DL) method required approximately 24 hours of

GPU compute to complete its inference runs (except for multiple sequence alignment

(MSA)-dependent AF3 and RoseTTAFold-All-Atom (RFAA), which respectively took

approximately 4 weeks and 2 weeks to finish their inference runs for each bench-

mark dataset). Notably, due to RFAA and AF3’s significant storage requirements
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Table E.1: The average runtime (in seconds) and peak memory usage (in GB) of each
baseline method on a 25% subset of the Astex Diverse dataset (using an NVIDIA
80GB A100 GPU for benchmarking). The symbol - denotes a result that could not
be estimated. Where applicable, an integer enclosed in parentheses indicates the
number of samples drawn from a particular baseline method.

Method Runtime (s) CPU Memory Usage (GB) GPU Memory Usage (GB)

P2Rank-Vina (40) 1,283.70 9.62 0.00

DiffDock-L (5) 88.33 8.99 70.42

DynamicBind (5) 146.99 5.26 18.91

NeuralPLexer (5) 29.10 11.19 31.00

RoseTTAFold-All-Atom (1) 3,443.63 55.75 72.79

Chai-1 (5) 114.86 58.49 56.21

AF3 (5) 3,049.41 - -

for running inference with their MSA databases, we utilized approximately 6 TB

of solid-state storage space in total to benchmark all baseline methods. Lastly, in

terms of CPU requirements, our experiments utilized approximately 64 concurrent

CPU threads for AutoDock Vina inference (as an upper bound) and 60 GB of CPU

RAM. Note that an additional 4-5 weeks of compute were spent performing initial

(non-sweep) versions of each experiment during PoseBench’s initial phase of devel-

opment.

As a more formal investigation of the computational resources required to run each

baseline method in this work, in Table E.1 we list the average runtime (in seconds) and

peak CPU (GPU) memory usage (in GB) consumed by each method when running

them on a 25% subset of the Astex Diverse dataset. We find that NeuralPLexer

provides the lowest computational runtime and DynamicBind the lowest peak CPU

and GPU memory requirements during benchmarking.

E.4 DOCUMENTATION FOR DATASETS

Below, we provide detailed documentation for each dataset included in our bench-

mark, summarized in Table 1 of the main text. Each dataset is freely available for
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download from the benchmark’s accompanying Zenodo data record [240] under a CC-

BY 4.0 license. In lieu of being able to create associated metadata for each of our

macromolecular datasets using an ML-focused library such as Croissant [241] (due to

file type compatibility issues), instead, we report structured metadata for our prepro-

cessed datasets using Zenodo’s web user interface [240]. Note that, for all datasets,

we authors bear all responsibility in case of any violation of rights regarding the usage

of such datasets.
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(a) RMSD of AF3’s predictions. (b) TM-score of AF3’s predictions.

Figure E.1: Accuracy of AF3’s predicted protein structures for the Astex Diverse
dataset.

(a) RMSD of AF3’s predictions. (b) TM-score of AF3’s predictions.

Figure E.2: Accuracy of AF3’s predicted protein structures for the PoseBusters
Benchmark dataset.
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(a) RMSD of AF3’s predictions. (b) TM-score of AF3’s predictions.

Figure E.3: Accuracy of AF3’s predicted protein structures for the DockGen dataset.

(a) RMSD of AF3’s predictions. (b) TM-score of AF3’s predictions.

Figure E.4: Accuracy of AF3’s predicted protein structures for the CASP15 dataset.
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E.4.1 Astex Diverse Set - Primary Ligand Docking

(Difficulty: Easy)

A common drug discovery task is to screen several novel drug-like molecules against

a target protein in rapid succession. The Astex Diverse dataset was originally devel-

oped with this application in mind, as it features many therapeutically relevant 3D

molecules for computational modeling.

• Motivation Several downstream drug discovery efforts rely on having access

to high-quality molecular data for docking.

• Collection For this dataset, which was originally compiled by [177], we adopt

the version further prepared by [112].

• Composition The dataset consists of 85 primary ligand protein complexes

deposited in the PDB up to 2007. As such, this dataset can be considered

an easy benchmarking dataset since many of its complexes may be found in

DL methods’ PDB-based training datasets. For each of these complexes, we

obtained high-accuracy predicted protein structures using AF3. The accuracy of

the AF3-predicted structures is measured in terms of their RMSD and TM-score

[171] compared to the corresponding crystal protein structures and is visualized

in Figure E.1. Notably, after alignment with the crystalized (holo) PLI binding

pocket residues, 63.53% (54.12% with ESMFold) of the predicted structures

have a global RMSD below 4 Å and TM-score above 0.7, indicating that most

of the dataset’s proteins have a reasonably accurate predicted structure.

• Hosting Our preprocessed version of the dataset (https://doi.org/10.5281/

zenodo.14629652) can be downloaded from the benchmark’s Zenodo data record

at https://zenodo.org/records/14629652/files/astex_diverse_set.tar.

gz.
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• Licensing We have released our preprocessed version of the dataset under a CC-

BY 4.0 license. The original PoseBusters Benchmark dataset is available under

a CC-BY 4.0 license on Zenodo [242]. The pre-holo-aligned protein structures

predicted by AF3 for this dataset (available on Zenodo [240]) must only be used

in accordance with AF3’s Terms of Use.

• Maintenance We will announce any errata discovered in or changes made to

the dataset using the benchmark’s GitHub repository at https://github.com/

BioinfoMachineLearning/PoseBench.

• Uses This dataset of predicted (apo) and crystal (holo) protein PDB and crystal

(holo) ligand SDF files can be used for primary ligand docking or protein-ligand

structure prediction.

• Metrics Ligand Centroid RMSD≤ 1 Å, Ligand Pose RMSD≤ 2 Å, PoseBusters-

Valid (PB-Valid), and PLIF-WM.
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E.4.2 PoseBusters Benchmark Set - Primary Ligand Docking

(Difficulty: Intermediate)

Like the Astex Diverse dataset, the PoseBusters Benchmark dataset was originally

developed for docking individual ligands to target proteins. However, this dataset

features a larger and more challenging collection of PLI complexes for computational

modeling.

• Motivation Data sources of challenging primary ligand protein complexes for

molecular docking are critical for the development of future docking methods.

• Collection For this dataset, we adopt the version introduced by [112].

• Composition The dataset consists of 308 primary ligand protein complexes

deposited in the PDB in 2019 and after. As such, this dataset poses a mod-

erate challenge for DL methods, since several of such methods were trained

on data deposited before this cutoff date (notably except for Chai-1 and AF3

which used training cutoff dates of January 12, 2021 and September 30, 2021,

respectively). For each of the dataset’s complexes, we obtained high-accuracy

predicted protein structures using AF3. The accuracy of the AF3-predicted

structures is measured in terms of their RMSD and TM-score compared to the

corresponding crystal protein structures and is visualized in Figure E.2. No-

tably, after alignment with the crystalized (holo) PLI binding pocket residues,

59.09% (53.25% with ESMFold) of the predicted structures have a global RMSD

below 4 Å and TM-score above 0.7, indicating that most of the dataset’s pro-

teins have a reasonably accurate predicted structure.

• Hosting Our preprocessed version of the dataset (https://doi.org/10.5281/

zenodo.14629652) can be downloaded from the benchmark’s Zenodo data record

at https://zenodo.org/records/14629652/files/posebusters_benchmark_
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set.tar.gz.

• Licensing We have released our preprocessed version of the dataset under a

CC-BY 4.0 license. The original dataset is available under a CC-BY 4.0 license

on Zenodo [242]. The pre-holo-aligned protein structures predicted by AF3 for

this dataset (available on Zenodo [240]) must only be used in accordance with

AF3’s Terms of Use.

• Maintenance We will announce any errata discovered in or changes made to

the dataset using the benchmark’s GitHub repository at https://github.com/

BioinfoMachineLearning/PoseBench.

• Uses This dataset of predicted (apo) and crystal (holo) protein PDB and crystal

(holo) ligand SDF files can be used for primary ligand docking or protein-ligand

structure prediction.

• Metrics Ligand Centroid RMSD≤ 1 Å, Ligand Pose RMSD≤ 2 Å, PoseBusters-

Valid (PB-Valid), and PLIF-WM.
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E.4.3 DockGen-E Set - Primary Ligand Docking

(Difficulty: Challenging)

The DockGen dataset was originally designed for binding individual ligands to target

proteins within functionally novel PLI binding pockets [181], filtering out any protein

chains not associated with a novel pocket, which can remove important biomolecu-

lar context for DL methods to make their predictions. In this work, we introduced

DockGen-E, an enhanced version of DockGen that has each method predict the full

biologically relevant assembly of each novel pocket to expand their structural predic-

tion contexts (n.b., which is specifically important to achieve best performance with

DL co-folding methods such as AF3). As such, this new dataset is useful for evalu-

ating how well each baseline method can predict complexes containing functionally

distinct binding pockets compared to those on which the method may have primarily

been trained.

• Motivation Data sources of PLI complexes representing novel primary ligand

binding pockets are critical for the development of generalizable docking meth-

ods.

• Collection To curate this dataset, we collected the original dataset’s protein

and ligand binding pocket annotations for each complex introduced by [181].

Subsequently, we retrieved the corresponding first biological assembly listed in

the PDB to obtain each PDB entry’s biologically relevant complex, filtering

out complexes for which the first assembly could not be mapped to its original

protein and ligand binding pocket annotation. This procedure left 122 biologi-

cally relevant assemblies remaining for benchmarking. Important to note is that

these original DockGen complexes were deposited in the PDB from 2019 onward,

making this benchmarking dataset partially overlap with the training datasets

of multiple DL co-folding baseline methods such as NeuralPLexer, AF3, and
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Chai-1. Nonetheless, our benchmarking results in the main text demonstrate

that baseline DL methods are challenged to find the correct (novel) binding

pocket conformations represented by this dataset, suggesting that all baseline

DL models have yet to learn truly comprehensive representations of protein-

ligand binding.

• Composition The dataset consists of 122 primary ligand protein complexes,

for each of which we obtained high-accuracy predicted protein structures us-

ing AF3. The accuracy of the AF3-predicted structures is measured in terms

of their RMSD and TM-score compared to the corresponding crystal protein

structures and is visualized in Figure E.3. Notably, after alignment with the

crystalized (holo) PLI binding pocket residues, 74.59% (57.38% with ESMFold)

of the predicted structures have a global RMSD below 4 Å and TM-score above

0.7, indicating that most of the dataset’s proteins have a reasonably accurate

predicted structure.

• Hosting Our preprocessed version of the dataset (https://doi.org/10.5281/

zenodo.14629652) can be downloaded from the benchmark’s Zenodo data record

at https://zenodo.org/records/14629652/files/dockgen_set.tar.gz.

• Licensing We have released our preprocessed version of the DockGen-E dataset

under a CC-BY 4.0 license. The original DockGen dataset is available under an

MIT license on Zenodo [181], and the DockGen-E dataset along with its pre-

holo-aligned protein structures predicted by AF3 is also available on Zenodo

[240]. Notably, these AF3-predicted protein structures must only be used in

accordance with AF3’s Terms of Use.

• Maintenance We will announce any errata discovered in or changes made to

the dataset using the benchmark’s GitHub repository at https://github.com/

BioinfoMachineLearning/PoseBench.
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• Uses This dataset of predicted (apo) and crystal (holo) protein PDB and crystal

(holo) ligand PDB files can be used for primary ligand docking or protein-ligand

structure prediction.

• Metrics Ligand Centroid RMSD≤ 1 Å, Ligand Pose RMSD≤ 2 Å, PoseBusters-

Valid (PB-Valid), and PLIF-WM.
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E.4.4 CASP15 Set - Multi-Ligand Docking

(Difficulty: Challenging)

As the most distinct of our benchmark’s four evaluation datasets, the CASP15 PLI

dataset was created to represent the new protein-ligand modeling category in the

15th Critical Assessment of Techniques for Structure Prediction (CASP) competi-

tion. Whereas datasets such as PoseBusters Benchmark and Astex Diverse feature

solely primary ligand protein complexes, the CASP15 dataset provides the research

community with a variety of challenging organic (e.g., drug molecules) and inorganic

(e..g., ion) cofactors for multi -ligand biomolecular modeling and scoring.

• Motivation Multi-ligand evaluation datasets for molecular docking provide the

rare opportunity to assess how well baseline methods can model intricate PLIs

while avoiding troublesome inter-ligand steric clashes. Additionally, accurate

modeling of multi-ligand complexes in future work may lead to improved algo-

rithms for computational enzyme design and regulation [167].

• Collection For this dataset, we manually collect each publicly and privately

available CASP15 protein-bound ligand complex structure compatible with

protein-ligand (e.g., non-nucleic acid) benchmarking.

• Composition The dataset consists of 102 (86) fragment ligands contained

within 19 (15) separate (publicly available) protein complexes, of which 6 (2)

and 13 (2) of these complexes are single and multi-ligand complexes, respec-

tively. Importantly, each of such complexes (if publicly available) was released in

the PDB after 2022, making this benchmarking dataset strictly non-overlapping

with the training datasets of all baseline methods. The accuracy of the dataset’s

AF3-predicted structures is measured in terms of their RMSD and TM-score

compared to the corresponding crystal protein structures and is visualized in

Figure E.4. Notably, after alignment with the crystalized (holo) PLI binding
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pocket residues, 36.84% and 20.00% (26.32% and 13.33% with ESMFold) of

the total and publicly available predicted structures, respectively, have a global

RMSD below 4 Å and TM-score above 0.7, indicating that a portion of the

dataset’s proteins has a reasonably accurate predicted structure. Given the

much larger structural assemblies of this dataset’s protein complexes compared

to those of the other benchmark datasets, we believe the accuracy of these pre-

dictions may be improved with advancements in machine learning modeling of

biomolecular assemblies.

• Hosting Our preprocessed version of (the publicly available version of) this

dataset (https://doi.org/10.5281/zenodo.14629652) can be downloaded from

the benchmark’s Zenodo data record at https://zenodo.org/records/14629652/

files/casp15_set.tar.gz.

• Licensing We have released our preprocessed version of the (public) dataset

under a CC-BY 4.0 license. The original (public) dataset is free for download

via the RCSB PDB [173], whereas the dataset’s remaining (private) complexes

must be manually requested from the CASP organizers. The pre-holo-aligned

protein structures predicted by AF3 for this dataset (available on Zenodo [240])

must only be used in accordance with AF3’s Terms of Use.

• Maintenance We will announce any errata discovered in or changes made to

the dataset using the benchmark’s GitHub repository at https://github.com/

BioinfoMachineLearning/PoseBench.

• Uses This dataset of predicted (apo) and crystal (holo) protein PDB and crystal

(holo) ligand PDB files can be used for multi-ligand docking or protein-ligand

structure prediction.

• Metrics (Fragment) Ligand Pose RMSD ≤ 2 Å, (Complex) PoseBusters-Valid
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(PB-Valid), and (Complex) PLIF-WM.
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Figure E.5: Comparative analysis of evaluation dataset protein-ligand interactions.

E.5 ANALYSIS OF PROTEIN-LIGAND INTERACTIONS

E.5.1 Dataset protein-ligand interaction distributions

Inspired by a similar analysis presented in the PoseCheck benchmark [145], in this

section, we study the frequency of different types of protein-ligand (pocket-level) in-

teractions such as van der Waals contacts and hydrophobic interactions occurring na-

tively within (n.b., a size-1000 random subset of) the commonly-used PDBBind 2020

docking training dataset (i.e., PDBBind 2020 (1000)) as well as the Astex Diverse,

PoseBusters Benchmark, DockGen, and CASP15 benchmark datasets, respectively.

In particular, these measures allow us to better understand the diversity of interac-

tions each baseline method within the PoseBench benchmark is tasked to model,

within the context of each evaluation dataset. Furthermore, these measures directly

indicate which benchmark datasets are most dissimilar from commonly used training
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data for baseline methods. Figure E.5 displays the results of this analysis.

Overall, we find that the PDBBind 2020, Astex Diverse, and PoseBusters Bench-

mark datasets contain similar types and frequencies of interactions, with the Pose-

Busters Benchmark dataset containing slightly more hydrogen bond acceptors (∼3 vs

1) and fewer van der Waals contacts (∼5 vs 8) on average compared to the PDBBind

2020 dataset. However, we observe a more notable difference in interaction types

and frequencies between the DockGen and CASP15 datasets and the three other

datasets. Specifically, we find these two benchmark datasets contain a notably dif-

ferent quantity of hydrogen bond acceptors and donors (n.b., ∼40 for CASP15), van

der Waals contacts (∼200 for CASP15), and hydrophobic interactions (∼2 for Dock-

Gen) on average. These dataset-level interaction disparities may partially explain the

baseline-challenging DockGen benchmarking results reported in Section 2 of the main

text.

Also particularly interesting to note is the CASP15 dataset’s bimodal distribution

of van der Waals contacts, suggesting that the dataset contains two primary classes

of interacting ligands giving rise to van der Waals interactions. One possible expla-

nation for this phenomenon is that the CASP15 prediction targets, in contrast to

the PDBBind, Astex Diverse, PoseBusters Benchmark, and DockGen targets, consist

of a variety of both organic (e.g., drug-like molecules) and inorganic (e.g., metal)

cofactors.

E.5.2 Baseline method protein-ligand interaction distributions

Intrigued by the dataset interaction patterns presented in Figure E.5, here we further

investigate the predicted PLIs produced by each baseline method for each evaluation

dataset to study which DL methods can most faithfully reproduce the native distri-

bution of PLIs within each dataset. Our results in Figures E.6, E.7, E.8, and E.9

suggest that AF3 demonstrates the best overall ability to recapitulate the crystalized
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PLIs observed within these datasets, in line with the PLIF-WM benchmarking re-

sults presented in Section 2 of the main text. Nonetheless, its predicted interaction

distributions, in particular for the DockGen and CASP15 datasets, have much room

for improvement, especially for more structured interactions such as hydrogen bonds.
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Figure E.6: Comparative analysis of Astex Diverse protein-ligand interactions.

Figure E.7: Comparative analysis of PoseBusters Benchmark protein-ligand interac-
tions.
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Figure E.8: Comparative analysis of DockGen protein-ligand interactions.

Figure E.9: Comparative analysis of CASP15 protein-ligand interactions.
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E.6 ADDITIONAL METHOD DESCRIPTIONS

To better contextualize the benchmark’s results comparing DL methods to conven-

tional docking algorithms, in this section, we provide further details regarding how

each baseline method in the benchmark leverages different sources of biomolecular

information to predict PLIs for a given protein target.

E.6.1 Input and output formats

1. Formats for conventional methods are as follows:

a) Molecular docking (protein-fixed) software tools such as AutoDock Vina,

which require specification of protein binding sites, are provided with not

only a predicted protein structure from AF3 but also the centroid coordi-

nates of each predicted PLI binding site residue as estimated by the well-

known P2Rank binding site prediction algorithm [211]. Such binding site

residues are classified using a 10 Å protein-ligand heavy atom interaction

threshold and a 25 Å inter-ligand heavy atom interaction threshold to de-

fine a ”group” of ligands belonging to the same binding site and therefore

residing in the same 25 Å3-sized binding site input voxel for AutoDock

Vina. For interested readers, for all four benchmark datasets, we also

provide the benchmarking code necessary to run AutoDock Vina using

any other baseline method’s predicted binding site residues (e.g., those

of DiffDock-L) according to the same binding site classification scheme

described above.

2. Formats for DL docking methods are as follows:

a) DiffDock-L is provided with a protein structure predicted by AF3 and

(fragment) ligand SMILES strings. The model is then tasked with pro-
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ducing (multiple rank-ordered) ligand conformations (for each fragment)

for the given protein structure (which remains fixed during docking). Note

that DiffDock-L does not natively support multi-ligand SMILES string

inputs, so in this work, we propose a modified inference procedure for

DiffDock-L which autoregressively presents each (fragment) ligand SMILES

string to the model while providing the same predicted protein structure

to the model in each inference iteration (reporting for each complex the

average confidence score over all iterations). Notably, as an inference-time

modification, this sampling formulation permits multi-ligand sampling yet

cannot model multi-ligand interactions directly and therefore often pro-

duces inter-ligand steric clashes.

b) As a single-ligand DL (flexible) docking method, DynamicBind adopts

the same input and output formats as DiffDock-L with the following excep-

tions: (1) the predicted input protein structure is now flexible in response

to (fragment) ligand docking; (2) the autoregressive inference procedure we

adapted from that of DiffDock-L now provides DynamicBind with its own

most recently predicted protein structure in each (fragment) ligand infer-

ence iteration, thereby providing the model with partial multi-ligand inter-

action context; and (3) iteration-averaged confidence scores and predicted

affinities are reported for each complex. Nonetheless, for both DiffDock-L

and DynamicBind, such modified inference procedures highlight the impor-

tance in future work of retraining such generative docking methods directly

on multi-ligand complexes to address such inference-time compromises.

3. Formats for DL co-folding methods are as follows:

a) One of the first DL co-folding methods, RoseTTAFold-All-Atom is pro-

vided with a (multi-chain) protein sequence as well as (fragment) ligand
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SMILES strings. The method is subsequently tasked with producing not

only a (single) bound ligand conformation but also the bound protein con-

formation, using diverse MSA databases to provide evolutionary informa-

tion to the model.

b) NeuralPLexer is a protein-ligand co-folding diffusion model trained using

expansive PDB molecule and protein data sources. It receives as its in-

puts a (multi-chain) protein sequence as well as (fragment) ligand SMILES

strings. The method is then tasked with producing multiple rank-ordered

(flexible) protein-ligand structure conformations for each input complex,

where we use the method’s average ligand heavy atom plDDT scores for

sampling ranking.

c) AlphaFold 3 is a commercially-restricted biomolecular co-folding model

trained on exhaustive PDB crystal structures and AlphaFold 2-predicted

distillation structures. Following its default settings for inference, the

model receives as its inputs a (multi-chain) protein sequence and (frag-

ment) ligand SMILES strings, with default MSA and template inputs pro-

vided to the model. The method is then tasked with producing multi-

ple rank-ordered (flexible) protein-ligand structure conformations for each

input complex, using the method’s intrinsic ranking score [27] for rank-

ordering.

d) Chai-1 is an open-source co-folding model (akin to AF3) trained on ex-

haustive PDB crystal structures and AlphaFold 2-predicted distillation

structures along with AF3-based training protocols. Following its default

settings for inference, the model receives as its inputs a (multi-chain) pro-

tein sequence and (fragment) ligand SMILES strings, with paired MSAs

yet no template structures provided (as is its default setting). The method

is then tasked with producing multiple rank-ordered protein-ligand bound

206



structure conformations for each input complex, using the method’s intrin-

sic AF3-like ranking score for rank-ordering. Note that, as Chai-1’s source

code does not provide resources to generate multiple sequence alignments

for input featurization, Chai-1 uses standardized (taxonomy-paired) mul-

tiple sequence alignments akin to those used by AF3 in all benchmarking

experiments.
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E.7 ADDITIONAL RESULTS

In this section, we provide additional results for each baseline method using the Astex

Diverse, PoseBusters Benchmark, and DockGen datasets as well as the CASP15 ligand

prediction targets. Note that for all violin plots listed in this section, we curate

them using combined results across each method’s three independent runs (where

applicable), in contrast to this section’s bar charts where we instead report mean and

standard deviation values across each method’s three independent runs.

E.7.1 Expanded primary ligand results

Primary ligand RMSD results

In Figures E.10, E.11, and E.12, we report the (binding site-superimposed) ligand

RMSD values of each baseline method across the primary ligand Astex Diverse, Pose-

Busters Benchmark, and DockGen datasets, with molecular dynamics (MD)-based

structural relaxation applied post-hoc. Overall, these figures demonstrate that AF3

and Chai-1 achieve the tightest RMSD distributions, except for single-sequence AF3

which occasionally produces catastrophic prediction errors by targeting incorrect PLI

binding pockets. Further, these results show that MD-based relaxation generally does

not modify the RMSD distribution of most baseline methods, except for DynamicBind

and RFAA for which neither seem to benefit from such post-hoc optimizations.
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Figure E.10: Astex Diverse dataset results for primary ligand docking RMSD.
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Figure E.11: PoseBusters Benchmark dataset results for primary ligand docking
RMSD.

Figure E.12: DockGen dataset results for primary ligand docking RMSD.

210



E.7.2 Expanded CASP15 results

Overview of expanded results

In this section, we begin by reporting additional CASP15 benchmarking results in

terms of each baseline method’s multi-ligand RMSD and lDDT-PLI distributions

as violin plots. Subsequently, we report successful ligand docking success rates as

well as RMSD and lDDT-PLI results specifically for the single-ligand (i.e., primary

ligand) CASP15 targets. Lastly, we report all the above single and multi-ligand

results specifically using only the CASP15 targets for which the crystal structures are

publicly available, to facilitate reproducible future benchmarking.

Multi-ligand RMSD and lDDT-PLI

To start, Figures E.13, E.14, and E.15 report each method’s multi-ligand RMSD and

lDDT-PLI distributions as well as PB-Valid rates with and without relaxation. We

see that AF3 produces the most tightly bound and accurate RMSD and lDDT-PLI

distributions overall yet is challenged in its PB-Valid rate by the conventional method

AutoDock Vina, highlighting that AF3 predicted several structurally accurate yet

chemically implausible multi-ligand conformations for this dataset.

All single-ligand results

Next, Figures E.16, E.17, E.18, and E.19 display each method’s single-ligand CASP15

docking success rates, PB-Valid rates, docking RMSD, and docking lDDT-PLI distri-

butions, respectively. In summary, we can make a few respective observations from

these plots. (1) AF3 achieves the highest structural accuracy for this subset of targets

yet is challenged in its PLIF-WM rate by conventional and DL co-folding baseline

methods such as AutoDock Vina and NeuralPLexer. (2) Even though most are po-

sitionally incorrect, structurally and chemically speaking, the majority of AutoDock
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Vina and DiffDock-L’s predictions are valid according to the PoseBusters software

suite, whereas fewer of AF3’s predictions are. (3) AutoDock Vina, DiffDock-L, Neu-

ralPLexer, and AF3 yield notably lower RMSD distributions than all other baseline

methods (including all single-sequence DL co-folding variants). (4) Only AF3 and

AutoDock Vina produce a reasonable range of lDDT-PLI scores for these single-ligand

targets.

Single and multi-ligand results for public targets

Lastly, for completeness and reproducibility, Figures E.20, E.21, E.22, and E.23

present corresponding multi-ligand results for the public CASP15 targets, whereas

Figures E.24, E.25, E.26, and E.27 report corresponding single-ligand results for the

public CASP15 targets. Overall, we observe marginal differences between the full

and public CASP15 target results for multi-ligand complexes, since once again AF3

achieves top results overall in the context of multi-ligands. However, we notice more

striking performance drops between the full and public single-ligand CASP15 target

results, suggesting that some of the private single-ligand complexes are easier predic-

tion targets than most of the publicly available single-ligand complexes. In short, we

find that AutoDock Vina consistently performs best in this single-ligand setting.
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Figure E.13: CASP15 dataset results for multi-ligand docking RMSD with relaxation.

Figure E.14: CASP15 dataset results for multi-ligand docking lDDT-PLI with relax-
ation.
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Figure E.15: CASP15 dataset results for multi-ligand docking PB-Valid rates with
relaxation.
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Figure E.16: CASP15 dataset results for successful single-ligand docking with relax-
ation.

Figure E.17: CASP15 dataset results for single-ligand PB-Valid rates with relaxation.
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Figure E.18: CASP15 dataset results for single-ligand docking RMSD with relaxation.

Figure E.19: CASP15 dataset results for single-ligand docking lDDT-PLI with relax-
ation.
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Figure E.20: CASP15 public dataset results for successful multi-ligand docking with
relaxation.

Figure E.21: CASP15 public dataset results for multi-ligand PB-Valid rates with
relaxation.
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Figure E.22: CASP15 public dataset results for multi-ligand docking RMSD with
relaxation.

Figure E.23: CASP15 public dataset results for multi-ligand docking lDDT-PLI with
relaxation.
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Figure E.24: CASP15 public dataset results for successful single-ligand docking with
relaxation.

Figure E.25: CASP15 public dataset results for single-ligand PB-Valid rates with
relaxation.
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Figure E.26: CASP15 public dataset results for single-ligand docking RMSD with
relaxation.

Figure E.27: CASP15 public dataset results for single-ligand docking lDDT-PLI with
relaxation.
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[7] K. Wüthrich. “Protein structure determination in solution by NMR spec-

troscopy.” In: Journal of Biological Chemistry 265.36 (1990), pp. 22059–22062.

[8] K. M. Yip, N. Fischer, E. Paknia, A. Chari, and H. Stark. “Atomic-resolution

protein structure determination by cryo-EM”. In: Nature 587.7832 (2020),

pp. 157–161.

[9] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: nature 521.7553

(2015), pp. 436–444.

221



[10] P. J. Werbos. “Backpropagation through time: what it does and how to do it”.

In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L.

Kaiser, and I. Polosukhin. “Attention is all you need”. In: Advances in neural

information processing systems 30 (2017).

[12] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. “The

graph neural network model”. In: IEEE transactions on neural networks 20.1

(2008), pp. 61–80.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with

deep convolutional neural networks”. In: Advances in neural information pro-

cessing systems 25 (2012).

[14] H. Wang, T. Fu, Y. Du, W. Gao, K. Huang, Z. Liu, P. Chandak, S. Liu,

P. Van Katwyk, A. Deac, et al. “Scientific discovery in the age of artificial

intelligence”. In: Nature 620.7972 (2023), pp. 47–60.

[15] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
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[39] K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko.

“Quantum-chemical insights from deep tensor neural networks”. In: Nature

communications 8.1 (2017), pp. 1–8.

[40] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur. “Protein Interface Prediction

using Graph Convolutional Networks”. In: Advances in Neural Information

Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc.,

225

https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.26052
https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.26052
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.26052
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.26052
https://academic.oup.com/nar/article-pdf/49/W1/W431/38842088/gkab314.pdf
https://academic.oup.com/nar/article-pdf/49/W1/W431/38842088/gkab314.pdf
https://doi.org/10.1093/nar/gkab314


2017, pp. 6530–6539. url: https://proceedings.neurips.cc/paper/2017/

file/f507783927f2ec2737ba40afbd17efb5-Paper.pdf.

[41] T. Vreven, I. H. Moal, A. Vangone, B. G. Pierce, P. L. Kastritis, M. Torchala,
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J. Söding. “HH-suite3 for fast remote homology detection and deep protein

annotation”. In: BMC bioinformatics 20.1 (2019), pp. 1–15.

[49] M. F. Lensink, G. Brysbaert, N. Nadzirin, S. Velankar, R. A. Chaleil, T. Ger-

guri, P. A. Bates, E. Laine, A. Carbone, S. Grudinin, et al. “Blind prediction

of homo-and hetero-protein complexes: The CASP13-CAPRI experiment”. In:

Proteins: Structure, Function, and Bioinformatics 87.12 (2019), pp. 1200–

1221.

[50] M. F. Lensink, G. Brysbaert, T. Mauri, N. Nadzirin, S. Velankar, R. A. Chaleil,

T. Clarence, P. A. Bates, R. Kong, B. Liu, et al. “Prediction of protein as-

semblies, the next frontier: The CASP14-CAPRI experiment”. In: Proteins:

Structure, Function, and Bioinformatics (2021).

[51] R. A. Jordan, E.-M. Yasser, D. Dobbs, and V. Honavar. “Predicting protein-

protein interface residues using local surface structural similarity”. In: BMC

bioinformatics 13.1 (2012), pp. 1–14.

[52] J. Yang, A. Roy, and Y. Zhang. “Protein–ligand binding site recognition using

complementary binding-specific substructure comparison and sequence profile

alignment”. In: Bioinformatics 29.20 (2013), pp. 2588–2595.

[53] J. Ingraham, V. Garg, R. Barzilay, and T. Jaakkola. “Generative Models for

Graph-Based Protein Design”. In: Advances in Neural Information Processing

227



Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
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